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Abstract

Wigderson presented an O(nl’l/(’“’l))-coloring algorithm for k-colorable graphs, which used an (A + 1)-
coloring algorithm as a subroutine. Karger et al. improved the result to an O(nl’?’/(kJH))-coloring7 using an
O(A1=2/F)_coloring algorithm as a subroutine instead. Suppose we have an algorithm using O(A1~2/F) colors,
where 2 < & < 3, how we can improve the results for k-colorable graphs.
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I. INTRODUCTION

A proper vertex coloring of a graph G = (V| E) is an assignment of colors to its vertices such that no
two adjacent vertices receive the same color. Equivalently, a k-coloring of G is a partition of its vertices
into k independent sets. It is well known [1] [2] that the problem of properly coloring a k-colorable graph
with k colors is NP-hard, for any k& > 3.

Wigderson [3] gave a simple algorithm for coloring k-colorable graphs with O(n!=/(*=1)) colors. Blum
[4] improved the result to O(n%) colors, where as = 3/8,a4 = 3/5,a5 = 91/131,- - -. Karger, Motwani
and Sudan [5] showed, using semidefinite programming, that k-colorable graph with maximum degree



A can be colored with O(A'=2/%) colors. Combined with the technique of Wigderson [3], Karger et al.
[5] presented an O(n'~3/(*+1))_coloring for k-colorable graph. Later, Blum and Karger [6] obtained an
O(n3/)-coloring for 3-colorable graph and most recently, Halperin, Nathaniel and Zwick [7] provided
an O(nP*)-coloring for k > 4, where by = 7/19, b5 = 97/207, - - -.

The technique of Wigderson [3] leads to the interest with the maximum degree A. For example,
Wigderson [3] and Karger et al. [5] only used different algorithms when the maximum degree is relatively
small and obtained the different results in terms of n. The algorithm of Wigderson [3] uses (A + 1)-
coloring algorithm for the graph with maximum degree A and colors the entire graph with O(nl_l/ (k_l))
colors. On the other hand, the algorithm of Karger et al. [5] uses O(A'~2/%)-coloring algorithm for the
graph with maximum degree A and leads to an O(n'~3/(*+1))_coloring for the entire graph. Thus, we
can easily deduce that if we have an algorithm using less colors in terms of A, then we can derive an
algorithm using less colors in terms of n. In this paper, we assume that we have an algorithm that colors
any k-colorable graph with maximum degree A using O(Al_w/ k) colors where 2 < z < 3, then how we
could improve the results for k-colorable graph.

The rest of the paper is structured as follows. In Section 2, we give some definitions. In Section 3, we
show the improvement over the algorithm of Karger et al. [5]. Section 4 an 5 are for the improvement over
the algorithms of Blum and Karger [6] and Halperin et al.[7], respectively. Finally, concluding remarks
is in Section 6.

II. PRELIMINARIES AND DEFINITIONS

Let us introduce the graph-theoretic notation that will be used throughout this paper. Given a graph G,
let V denote the vertices of G and E denote the edges of G. We will use N (v) to denote the neighborhood
of a vertex v, d(v) to denote the degree of v and A to denote the maximum degree of the graph. That
is, for G = (V, E),

Nw) = A{ul|(v,u) € E},
d(v) = [N(v)],
A = rvneaac{d(v)}.

The subgraph of G induced by U C V is the graph Gy = (U, F'), where
F = {(u,w)lueUweU, and (u,w) € E}.

III. THE O(n!~@+0)/(+1))_coLoORING
A. The Karger-Motwani-Sudan Algorithm

Karger, Motwani and Sudan [5] introduced the notion of vector colorings of a graph, which is closely
related to Lovasz’s orthogonal representations and ¥-function [8] [9] :

Definition ([5]) Given a graph G = (V, E) on n vertices and a real number k > 1, a vector k-coloring
of G is an assignment of n-dimensional unit vectors v; to each vertex i € V, such that for any two adjacent
vertices ¢ and j the dot product of their vectors satisfies the inequality:

1

{vi,vj) < ——7-

(1)
Karger, Motwani and Sudan [5] obtained the following results.

Theorem 1 ([5]) Any k-colorable graph on n vertices with mazimum degree A can be colored, in proba-

bilistic polynomial time, using O(Al_z/k) colors.

Theorem 2 ([5]) Any k-colorable graph on n vertices can be colored, in probabilistic polynomial time,

using O(n*=3/+:+1)) colors.

B. The O(n'~+0/(+1))_coloring

Corollary 3 Suppose we have an algorithm A that colors any k-colorable graph with mazimum degree
A using O(A=*/F) colors, where 2 < x < 3. Then we can derive an algorithm B that colors any k-
colorable graph using O(n“*) colors, where Ay <1 — (z +1t)/(k+ 1), for k >3 and t = 0.927.



Proof. We use induction on k.

k = 3. While A > n”, let v be a vertex with d(v) = A, 2-color the subgraph G, induced by N(v),
set the colored vertices aside and repeat on the remaining graph using new colors. When A < n”, we
apply algorithm A to color the remaining graph using O(n(!~%)?) colors. If

1—,0:(1—%),0, (2)

then the 3-colorable graph can be colored with O(nl_%) colors, where 2 < z < 3.

Assume inductively that the claim is true for (k — 1)-colorable graph. That is, algorithm B colors any
(k — 1)-colorable graph using O(n?*-1) colors. Now we will prove the inductive assertion of k.

While A > n, apply algorithm B on the subgraph Gy, induced by N(v) of a vertex with d(v) = A.
Because G (y) is (k —1)-colorable, algorithm B produces a coloring of Gy () using O(|N (v)|4¥-1) colors,
from which an independent set of size Q(|N (v)|'=4%-1) > Q(n(1=4k-1)?) is easily extracted. Giving the
same color to all the vertices in this independent set, we set all the colored vertices aside and repeat
on the remaining graph using new colors. When A < n”, we apply algorithm A to color the remaining
graph using O(n(!~#%)?) colors. Then algorithm B colors any k-colorable graphs using O(n“*) colors if
the following equations hold:

A4 = 1-pe (3)
1= = 1-(—4p. (4)

Soloving the equations with respect to Ay, we obtain the recurrence relation:

1=z
A = k 5
P e e (5)
We can rewrite this relation as follows:
1 T 1
=1+(1-2)—— 6
and for k = 3,
3
Az =1- . 7
. ")
bet 1 kel
— =, (8)
1— A T+t
which is hold for k = 3, where 2 < z < 3 and ¢t = 0.927:
1 6—x 4
= . 9
1-— A3 3 < x + t ( )
Using equation (8) on the relation (6), we can prove that, where 2 < < 3 and ¢t = 0.927,
T+t T+t
Ap=1-— — . 10
k kit 0kt (10)

The observation is that Ay is decreasing with z from (6), and the algorithm presented by Karger
et al. [5] is the case as x = 2 (In this case, We can obtain that A, = 1 — 3/(k + 1) from (6) with
Az = 1/4.). Thus, if there were an algorithm that colors any k-colorable graph with maximum degree
A using O(Al_f”/ k) colors, where 2 < z < 3, then we could derive an algorithm using less colors than
Karger et al. [5] for any k-colorable graph.



IV. THE 3-COLORABLE GRAPH
A. The Blum-Karger Algorithm

Applying Blum’s algorithm (Theorem 13 of [4]) and combining with Karger et al. [5] for 3-colorable
graph, Blum and Karger [6] provided the following results.
Lemma 4 ([6]) In any 3-colorable graph with average degree exceeding 2n”, we can make progress towards
an O(n®)-coloring where o = 3(1-p).
Theorem 5 ([6]) There is a polynomial time algorithm to color any 3-colorable graph with O(n®/*)
colors.

B. Combination of Blum’s Algorithm and Algorithm A

We are glven a 3-colorable graph. If its average degree is at least 2n”, we can color the graph using
O(n®) = O(n3(1=") colors based on Lemma 4. Otherwise, the graph has at least 2 5 vertices of degree less
than 4n”. The subgraph induced by those vertices clearly has maximum degree A < 4n”, and we color
the subgraph by algorithm A using é(n(l_%)p ) colors. This coloring must contain an independent set of
size O(n'~(1=5)P). Then we can color the 3-colorable graph using O(max{n(1=%)? n3(1=r)}) colors. Let

p= ﬁ, we obtain the following result.
9—3x

Corollary 6 There is an algorithm to color any 3-colorable graph with O(nB3) = O(n 22-52 ) colors.

We can rewrite B3 as follows: 3 9
3 5( 24 — 5.13), ( )

thus Bs is decreasing with z. When 2 < z < 3, it improves the result of O(n Tt )-coloring for 3-colorable
graph.

V. A LooK AT ALGORITHM COMBINED-COLOR OF HALPERIN ET AL.
A. Algorithm Combined-Color

By combining the coloring algorithms of Karger et al. [5], the combinatorial coloring algorithms of
Blum [4], and an extension of a technique of Alon and Kahale [10] for finding relatively large independent
sets in graphs, Halperin, Nathaniel and Zwick [7] obtained the new results.

Lemma 7 ([7]) Let G = (V, E) be a graph on n vertices with an independent set of size at least n/k,
where k > 2. Then, a subset S C V of size |S| > n/logn, and a vector (k + O(1/logn))-coloring of Gg,
the subgraph of G induced by S, can be found in polynomial time.

Lemma 8 ([7]) Let G = (V, E) be a k-colorable graph on n wvertices. Then, an independent set of G of
size Q(nf*)) can be found in polynomial time, where f(k) = 3/(k 4+ 1) for k > 3.

Theorem 9 ([7]) Let G = (V, E) be a k-colorable graph on n vertices that contains an independent set
of size at least n/k. Then, an independent set of G of size Q(nf(k)) can be found in polynomial time,
where f(k) =3/(k+1) for k > 3.

Theorem 10 ([7]) Algorithm Combined-Color runs in polynomial time and it colors any k-colorable
graph on n vertices using O(n®*) colors, where as = 0,3 = 3/14, and oy, = 1 —

for k> 4.

k+4+3(1— 2/k)/(1 ap—2)’

These results came from the following simple observation given by Blum [4]:
Lemma 11 ([4]) Let k > 3 be an integer and 0 < o < 1. If in any k-colorable graph G = (V, E) on n
vertices we can find, in polynomial time, at least one of the following:

1. Two vertices u,v € V that have the same color under any valid k-coloring of G (Same Color),

2. An independent set I C 'V of size O(n*~)(Large Independent Set),
then, we can color every k-colorable graph, in polynomial time, using O(n®) colors.
Theorem 12 ([4]) Let G = (V,E) be a k-colorable graph on n vertices with minimum degree dpin
in which no two vertices have more than s common neighbors. Then, it is possible to construct, in
polynomial time, a collection T of O(n) subsets of V', such that at least one T € T satisfies the following

two conditions: (i) |T| > Q(fm;m) (it) T has an independent subset of size at least (725 — O(===))|T|.

logn



B. Algorithm Combined-Color(x)

Using algorithm A, we can derive the following result similar to Lemma 8 [7] for finding a relatively
large independent set in graphs.

_ Corollary 13 Let G = (V, E) be a k-colorable graph on n vertices. Then, an independent set of G of size
Q(nf®) can be found in polynomial time, where 2 < x < 3, t = 0.927 and f(k) = 1— Ay > (z+1t)/(k+1),
for k> 3.

Proof. The proof is by induction on k.

k = 3. We use the result in Section 3. Apply the derived algorithm B to color the 3-colorable graph
using O(n'~43) = O(nl_ﬁ%) colors, from which an independent set of size Q(n% > Q(n”ozigw) is
extracted.

Assume inductively that for (k—1)-colorable graph, we can find an independent set of size Q(n/(*~1)) =
Q(nl_Akfl). Now for k-colorable graph, we describe two ways of finding independent sets of G. Using
the algorithm A to find an independent set of size Q(ﬁ) Alternatively, apply derived algorithm B
on the subgraph Gy, induced by N(v) of a vertex v with d(v) = A. Because G () is (k — 1)-colorable,

then we can find an independent set of size Q(A/(*~1)). Taking the larger of these two independent sets,
we obtain an independent set of G of size
~ n

Q(max{m, Af(k_l)})

1
>0 <n1+}(,€—”/f)> = Q(nf(k)).

Similar to Corollary 3, we can prove that f(k) =1— Ay > i—ﬁ as required.
Based on the Lemma 7 [7] and Corollary 13, we can obtain the following result, which is similar to

Theorem 9 [7]. Here we omit the proof, which is the same as the one presented by Halperin et al. [7].

Corollary 14 Let G = (V, E) be a k-colorable graph on n vertices that contains an independent set of
size at least n/k. Then, an independent set of G of size Q(nf*)) can be found in polynomial time, where
2<x<3,t=0927 and f(k)=1— A > (z+1t)/(k+ 1), for k> 3.

Now we derive the following algorithm Combined-Color(z) for k > 4.

Algorithm Combined-Color(z) for k > 4

1. Repeatedly remove from the graph G vertices of degree less than n”. Let U be the set of vertices
so removed and D be the average degree of Gy, thus D < nf.

2. If [U| > 2, apply algorithm A to find an independent set of Gy of size Q(n/D'~2/%) >
Q(n'~(-2/kp) TIf 1 — (1 — 2/k)p = 1 — By, then we make progress of type 2.

3. Otherwise(|U| < %), let W =V — U. Note that [W| > % and that the minimum degree dy,i, in
Gw satisfies d,,in > nP.

4. For every u,v € W, consider the set S = N(u) N N(v). If |S| > n'=#, then apply the coloring
algorithm recursively on Gg and (k—2). If Gg is (k—2)-colorable, then the algorithm produces a coloring
of Gg using O(]S|P+~2) colors, from which an independent set of size Q(|S[1~Br-2) > Q(n(1-Br-2)(1-5)) jg
easily extracted. If (1 — Bi_2)(1 — ) = 1 — By, then we make progress of type 2. If the coloring returned
by the recursive call uses more than O(|S|P*-2) colors, we can infer that Gg is not (k — 2)-colorable and
thus, u and v must be assigned the same color under any valid k-coloring of GG, then we make progress
of type 1.

5. Otherwise we know that |S| < n'~=# for every u,v € W. Also, we know that the minimum degree
dmin in Gy satisfies d,in > nP.

6. We now apply Blum’s algorithm, with d,;,, > n” and s < n!~?, and obtain a collection 7 of O(n)
subsets of W such that at least one T' € T satisfies |T'| > Q(d?’l—") > Q(n?tP-1) and T contains an

S
independent set of size at least (z25 — O(525))I -



7. Now apply the result of Corollary 14 on Gr, for each T' € 7. In at least one of these runs we
obtain an independent set of size Q(n(1=Ax-1)2r+A=1)) If (1 — Ay 1)(2p+ B — 1) = 1 — By, then we
make progress of type 2.

Algorithm Combined-Color(z) colors any k-colorable graph with O(n*) colors if the following equa-
tions hold.

1-(1-Dp = 1-By (12)
(1=By2)1—-0) = 1- B, (13)
(1-Ap-1)2p+B-1) = 1- By (14)

Solving these equations with respect to By, we obtain the recurrence relation:

1—Ap_
1+ 1_6”’:7; (15)

L+ (1= Ap) (=25 + 7oy

By, =

We can rewrite this relation as follows:

1 1 1—z/k x 1
D © I LR G R LS 1
1— By 2{ +1—Ak_1+( k)l—Bk_g} (16)

and By = 0 for k =2, B3 = (9 — 32)/(24 — 5z) for k = 3. It is easy to observe that By and Aj_; are
decreasing with z. When 2 < x < 3, we can improve the result of Halperin et al. [7].
Using the result of Corollary 3, let

T+t
Ay =1— —— 17
g k+1 (7)
and rewrite (16) as follows:
1 1 k+t T 1
=l (12— 18
1— By 2{ +$+t+( /C)l—Bk_z} (18)
It can be proved that for 2 < z < 3, t = 0.927 and k > 4, the following equation holds:
1 E+t—1 x(3—1)
= C 19
1—Br  z+f @ Raxp Ok (19)
where C}, satisfies the following recurrence relation:
z2—-2z)3-t) k-—=x
Cr = Cy—
Pk —2)(x+t) | 2k 7
1
< =Ch_
< 50k-2
We can obtain that +t 1
x
Bp=1-———+0(—). 20
F -1 oG (20)

VI. CONCLUDING REMARKS

If there were an algorithm that colors any k-colorable graph with maximum degree A using (j(Al_m/ k)
colors where 2 < z < 3 and k > 3, we have derived some improved results for k-colorable graph. The
remaining interesting problem is how to find such an algorithm.
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