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Abstract

In this paper, a combination of algorithms for graph coloring is discussed. The algorithms of Karger-
Motwani-Sudan and Blum-Karger can be combined in a simple way to yield a polynomial-time algorithm for
an O(n7/18)-coloring of any n-vertex 4-colorable graph. This result can be generalized to k-colorable graphs to
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obtainji coloring with O(n~ (k+1)/3-4/(11kZ-11Kk) ) colors, which slightly improves the bound given by Karger et
al. of O(nt=3/(&+1)) colors, for any k > 3.
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. Introduction

A proper vertex coloring of a graph G = (V| E) is an assignment of colors to its vertices such that no
two adjacent vertices receive the same color. The chromatic number x(G) is the minimum number of
colors for a proper vertex coloring. It is well known [1] [2] that the problem of properly coloring a graph
of chromatic number k with k colors is NP-hard, for any £ > 3.

A varity of applications such as register allocation [3] [4] [5] and timetable/examination scheduling
[6] [7] can be formulated as graph coloring problems. For most applications, it is sufficient to find an



approximately optimal graph coloring, that is, a coloring of the graph with a small number of colors.
This along with the apparent impossibility of an exact solution has led to great interest in the problem
of approximate graph coloring.

The analysis of approximation algorithms for graph coloring started with the work of Johnson [8§],
who showed that a version of the greedy algorithm gives an O(n/logn)-approximation algorithm for
k-coloring. Wigderson [9] gave a simple algorithm for coloring k-colorable graphs with O(nl~1/(*=1)
colors. Blum [10] provided an algorithm for coloring k-colorable graphs with O(n®) colors, where the oy,
satisfies a complicated recurrence relation. The first values of this sequence are az = 3/8, a4 = 3/5, and
as = 91/131. Karger, Motwani and Sudan [11] showed, using semidefinite programming, that k-colorable
graphs of maximum degree A can be colored with (j(Al_z/ k) colors, where the O notation hides a poly-
logarithmic factor. Combined with the technique of Wigderson [9], they presented a polynomial-time
algorithm for coloring k-colorable graphs using O(n'~3/**+1) colors. By combining the result of [11]
with [10], Blum and Karger [12] obtained a polynomial-time algorithm that colors any 3-colorable graph
with O(n3/*) colors. In this paper we show how the coloring algorithms of [11] and [12] can be combined
in a simple way to yield a polynomial-time algorithm for coloring any 4-colorable graph with O(n7/ 18)
colors. More generally, k-colorable graphs can be colored in polynomial time with O(an) colors, where
Cr =0 and Cy, = | — gogya—a/ame—my» for k = 3.

Wigderson’s algorithm [9], which colors any 3-colorable graph with O(nl/ 2) colors, considers the graph
in two cases. If there is a vertex with large degree, color its neighbors with 2 colors and set them aside.
The algorithm then recurses on the remaining graph using new colors. Once the maximum degree is
reduced to some small A, the algorithm colors the remaining graph with (A + 1) colors. The basic idea
of our algorithm is similar. When the graph has large degree, we use the techniques of [12] to color large
“3-colorable neighbors” of a vertex. When the degree is reduced to some small A, we use the algorithm
of [11] to color the remaining graph with O(AY/2) colors.

Algorithms k=3 k=4 k=5 k=6 k=7 General
Wigderson 1/2 2/3 3/4 4/5 5/6 1_ 1
(1983) 0.5 0.667 0.75 0.8 0.833 k—1
Blum 3/8 3/5 91/131 105/137 5301/6581
(1994) 0.375 0.6 0.695 0.766 0.806 e
Karger, Motwani, 1/4 2/5 1/2 477 5/8 1_ 3
Sudan(1998) 0.25 0.4 0.5 0.571 0.625 k+1
Our Results (3/714) 7/18 54/109 218/383 383/614 1 1
——t
(k > 4,2002) (0.214) 0.389 0.495 0.569 0.624 Tlfm

Table 1. The Previously Available Algorithms and Their Performance

Il. Preliminaries and Definitions

Let us introduce the graph-theoretic notation that will be used throughout this paper. Given a graph
G, let V(@) denote the vertices of G and E(G) denote the edges of G. We will use Ng(v) to denote the
neighborhood of a vertex v, dg(v) to denote the degree of v and A(G) to denote the maximum degree of
the graph. That is, for G = (V, E),

Ng(w) = {u|(v,u) € E},
de(v) = |Ng(v)l,
AG) = rglea&c{dg(v)}.

The subgraph of G induced by U C V is the graph H(U, F'), where

F = {(u,w)|ueUweU, and (u,w) € E}.



I11. Previous Results
A. The Karger-Motwani-Sudan Algorithm

Karger, Motwani and Sudan [11] introduced the notion of vector colorings of a graph, which is closely
related to Lovéasz’s orthogonal representations and ¢-function [13] [14] :

Definition ([11]) Given a graph G = (V, E) on n vertices and a real number k > 1, a vector k-
coloring of GG is an assignment of n-dimensional unit vectors v; to each vertex ¢ € V, such that for any
two adjacent vertices ¢ and j the dot product of their vectors satisfies the inequality

1
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Karger, Motwani and Sudan [11] obtained the following results.

Theorem 1 ([11]) Every k-colorable graph G has a vector k-coloring.

Theorem 2 ([11]) Any vector k-colorable graph on n vertices with maximum degree A can be colored,
in probabilistic polynomial time, using O(A1~2/¥) colors.

It is easy to see that if G is k-colorable then G also has a vector k-coloring. The semidefinite pro-
gramming based coloring algorithm of Karger-Motwani-Sudan [11] can also be used to color k-colorable
graphs of maximum degree A using O(A*=2/%) colors.

B. The Blum-Karger Algorithm

By combining the results of [11] with [10] , Blum and Karger [12] proved the following result.
Theorem 3 ([12]) There is a polynomial-time algorithm to color any n-vertex 3-colorable graph with
O(n3/**) colors.

C. The Wigderson Algorithm

Wigderson [9] presented the following simple algorithm based on the two simple facts.

Fact 4 ([9]) Any graph G can be colored in polynomial time with at most A(G) + 1 colors.

Fact 5 ([9]) Let G = (V, E) be a 3-colorable graph. Then for every vertex v € V, the subgraph of G
induced by Ng(v) is bipartite(2-colorable) and thus can be 2-colored in polynomial time.

Wigderson’s Algorithm W [9]
Input: An n-vertex 3-colorable graph G = (V, E)
Output: An O(n'/?)-coloring of G
1. n«|V|.
2.9+ 1.
3. While A(G) > [n*/?] do:
Let v be a vertex of maximum degree in G.
H < the subgraph of G induced by Ng(v).
Color H with colors 4,7 + 1.
Color v with color 7 + 2.
114 2.
G + the subgraph of G, obtained by deleting the vertices in Ng(v) U {v} from G.
1. (A(G) < [n¥/2))
Color G with colors 4,4+ 1, + 2, ...,4 + A(G) and halt.
Theorem 6 ([9]) Algorithm W colors any 3-colorable graph G = (V, E) on n vertices with O(n'/?)
colors, and runs in polynomial time.



IV. Simple Combination of Karger-Motwani-Sudan and Blum-Karger

By simply combining the results of Karger-Motwani-Sudan [11] and Blum-Karger [12], we first introduce
a new algorithm for coloring 4-colorable graph with O(n7/ 18) colors.

Based on Fact 7, Theorems 2 and 3, we propose our algorithm as follows.

Fact 7 ([9]) Let G = (V, E) be a k-colorable graph. Then for every vertex v € V, the subgraph of G
induced by N¢(v) is (k — 1)-colorable.

Algorithm-4
Input: An n-vertex 4-colorable graph G = (V, E)
Output: An O(n’/*®)-coloring of G
1. n«|V].
2. While A(G) > n"/® do:

Let v be a vertex of maximum degree in G.

N, (v) + a subset of Ng(v) with |[N&(v)| = n'/°.

H < the subgraph of G induced by N (v).

Use the algorithm of Blum-Karger [12] to color H with O(n!/8) colors.

Remove the colors from the palette.

G < the subgraph of G, obtained by removing from G all the vertices in N (v).
3. (A(G) [1n7/%)

Use the algorithm of Karger-Motwani-Sudan [11], to color G with O(A(G)Y2)=0(n"/18) colors and
halt.

Theorem 8 Algorithm-4 runs in probabilistic polynomial time and it colors any 4-colorable graph on
n vertices with O(n’/18) colors.

Proof. Based on Fact 7, the subgraph H induced by N/ (v) is 3-colorable, and can be colored by the
algorithm of Blum-Karger [12] with | N/, (v)[3/1* colors. We observe that each time Step 2 is executed, we
color n”/9 vertices using a new set of O(n'/®) colors. Note that this step can be executed at most n?/°
times, and thus the number of colors used in this step is

nZ/Qé(nl/6) _ O(TL?/]'S). (2)

Step 3 is executed only once and uses O(n7/ 18) colors by Theorem 2, so the total number of colors used
in both steps is bound to O(n’/*8). The time bound follows from the fact that both algorithms of [12]
and [11] run in probabilistic polynomial time.

How can we use the idea of Algorithm-4 to color k-colorable graphs in polynomial time for any k, and
what upper bound on the number of colors can we guarantee? Still based on Fact 7, we can recursively
use the algorithm for (k — 1)-colorable graphs in the one for k-colorable graphs.

Algorithm-k£
Input: An integer k > 2 and an n-vertex k-colorable graph G = (V| E)
Output: An O(n®<)-coloring of G
1. If k£ = 2, color the graph with 2 colors, in linear time.
2. If k = 3, use the algorithm of Blum-Karger [12] to color the graph with O(n3/14) colors.
3. For k > 4, let Algorithm-3 refer to the algorithm of Blum-Karger [12].
Assume that the graph can be colored with O(n®k) colors. For k = 3, C3 = 3/14.

4. [Recursive coloring stage for k > 4]
Cic

While A(G) > nT=27F do:
Let v be a vertex of maximum degree in G.

C
N(,(v) < a subset of Ng(v) with [N/ (v)| = nTK .




H < the subgraph of G induced by N (v).

CkC

Use Algorithm-(k — 1) to color H with O(n%) colors.

Remove the colors from the palette.

G < the subgraph of G, obtained by removing from G all the vertices in N (v).
5. [Karger-Motwani-Sudan coloring stage for k > 4]

C
(A(G) 0 n1—2k/k)

Use the algorithm of Karger-Motwani-Sudan [11] to color G with O(A(G)Y~2/%)=0(n*) colors and

halt.

Theorem 9 Algorithm-k runs in probabilistic polynomial time and it colors any k-colorable graph on
n vertices with O(nx) colors, where C, =0 and Cj, = 1 — (k+1)/3_4/1(11k2—11k:)- for k > 3.

Proof. As in the previous proof, still based on Fact 7, the subgraph H induced by N{(v) is (k — 1)-
colorable, thus H can be colored by Algorlthm—(k —1) with |Nj(v)|%<-1 colors. It is easy to observe that

CkCk—
each time Step 4 is executed, we color ni-2/K e vertices using a new set of O(n = ) colors. Note that
C

this step can be executed at most ntT TR times, and thus the number of colors used in this step is

Ck(Ck_1—-1)

nl—%O(n%) — O e, (3)

Step 5 is executed only once and uses O(n®x) colors by Theorem 2, so the total number of colors used
in both steps is bound to O(n%k) if the following equality holds:

Cr(Cr—1 — 1)
Cr + Y (4)
Solving this equation with respect to C, we obtain the recurrence relation:
k—2
Ch=————. 5
ok —2 - kCh4 (5)
We can rewrite this relation as follows:
k(k—1) (k—1)(k-2)
=k(k—-1
oA Uhn e wrs
Let Kk 1)
/Bk = 1_ Ck y
then 34
B3 = 11
and
Br =k(k—1)+ Br—1
We can prove that
4
B = 3h(k—=1)(k+1) = 17,
thus 1
Cr=1— =3 — k>3 (6)
T3 T 11k2—11k



V. Concluding remarks

We proposed a coloring algorithm that slightly improves the result of Karger, Motwani and Sudan [11].
It is interesting to obtain further improvements. Blum [10] stated several ways of coloring techniques
towards an O(n®)-coloring of graphs. Finding large independent sets in a graph seems significant to
reduce the number of colors. The algorithm of Karger-Motwani-Sudan [11] is used also to find large
independent sets. Using the semidefinite programming technique, Alon and Kahale [15] obtained an
algorithm that can be used to find large independent sets in a graph containing very large independent
sets. Recently, Halperin et. al. showed that the algorithm of Alon and Kahale can be combined to obtain
better approximation algorithms for graph coloring [16]. Coloring 3-colorable graphs using 4-colors is
also known to be NP-hard [17] [18]. It is a challenge to find better results than O(n3/1*)-coloring for
3-colorable graphs, which is supplied by Blum and Karger [12].

[1]
[2]

(3]
[4]
[5]

[6]
[7]

(8]
[9]

[10]
[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]

References

R. Karp. Reducibility among combinatorial problems. Plenum Press, 1972.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman
and Company, 1979.

P. Briggs, K.D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for register allocation. In Proceedings of the
SIGPLAN 89 Conference on Programming Languages Design and Implementation ACM, pages 275-284, 1989.

G.J. Chaitim. Register allocation and spilling via graph coloring. In Proceedings of the SIGPLAN 89 Conference on
Compiler Construction ACM, pages 98-101, 1982.

G.J. Chaitim, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W. Marjsteub. Register allocation via
coloring. Comput. Lang., 6:47-57, 1981.

C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, The Netherlands., 1973.

D.C. Wood. A technique for coloring a graph applicable to large-scale optimization problems. Comput. J., 12:317,
1969.

D. S. Johnson. Worst case behavior of graph coloring algorithms. In Proceedigns of the 5th Southeastern Conference
on Combinatorics, Graph Theory and Computing, Congressus Numerantium X:513-527, 1974.

A. Wigderson. Improving the performance guarantee for approximate graph coloring. Information Processing Letters,
30:729-735, 1983.

A. Blum. New approximation algorithms for graph coloring. Journal of the ACM, 41:470-516, 1994.

D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite programming. Journal of the
ACM, 45:246-265, 1998.

A. Blum and D. Karger. An 5(n3/l4)-coloring algorithm for 3-colorable graphs. Information Processing Letters,
61:49-53, 1997.

L. Lovasz. On the Shannon capacity of a graph. IEEE Transactions on Information Theory, 1T-25:1-7, 1979.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer Verlag,
1993. Second corrected edition.

N. Alon and N. Kahale. Approximating the independence number via the #-function. Mathematical Programming,
80:253-264, 1998.

E. Halperin, R. Nathaniel, and U. Zwick. Coloring k-colorable graphs using small palettes. 2001. Tel-Aviv University.
S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number. Combinatorica, 20:393—
415, 2000.

V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. In Proceedings of the 15th Annual
IEEE Conference on Computational Complexity, 80, 2000. Florence, Italy.



