
New Approximation Algorithms for Graph Coloring

AVRIM BLUM

A4assachasetts Instltufe of Technology, Camb~cdge, Massachusetts

Abstract. The problem of coloring a graph with the minimum number of colors is well known to
be NP-hard, even restricted to k-colorable graphs for constant h >3. This paper explores the

approximation problem of coloring k-colorable graphs with as few additional colors as possible m

polynomial time, with special focus on the case of k == 3.
The previous best upper bound on the number of colors needed for coloring 3-colorable

n-vertex graphs in polynomial time was 0(~/ -) colors by Berger and Rompel, improvmg

a bound of O(w) colors by Wigderson. This paper presents an algorithm to color any 3-colorable

graph with O(n3/8 polylog(n)) colors, thus breaking an “O((nl/2 - “[1’) barrier”. The algorlthm
given here is based on examining second-order neighborhoods of vertices, rather than just
immediate neighborhoods of vertices as in previous approaches. We extend our results to Improve

the worst-case bounds for coloring k-colorable graphs for constant k >3 as well.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerlcal Algorithms and problems—conzputatLon ur discrete structures: G.2. 1 [Discrete Math-
ematics]: Combinatorics—cornbmaf onal a~gonthms: G.2.2 [Discrete Mathematics]: Graph Theory

—graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, chromatic number, graph coloring

1. Introduction

A k-coloring of a graph is an assignment of one of k distinct colors to each

vertex in the graph so that no tsvo adjacent vertices are given the same color.

The chromatic number of a graph is the smallest k such that the graph can be

k-colored. Graph coloring problems model a collection of scheduling problems

such as examination scheduling and register allocation [Berge, 1973; Briggs et

al., 1989; Chaitin, 1982; Chaitin et al., 1981]. Graph coloring is also closely

related to other combinatorial problems such as finding the maximum indepen-

dent set in a graph (the largest set of vertices such that no two have an edge

between them). Unfortunately, from the algorithmic point of view, as is well

known, the problem of coloring a graph with the minimum number of colors is

NP-hard, even restricted to graphs of constant chromatic number at least 3.

This work was supported by a National Science Foundation (NSF) Graduate Fellowship, NSF
grant CCR 89-14428, and the Slcmens Corporation.

Author’s present address: School of Computer Science, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, PA 15213. Emad:avrim@theory .cs.cmu.edu.

Permlsslon to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Assoclatlon for Computmg Machinery. To copy otherwme, or to repubhsh, requmes a fee and/or

specific permission.
01994 ACM 0004-541 1/94/0500-0470 $03.50

New Approximation Algorithms for Graph Coloring 471

Thus, researchers attempting to find good fast algorithms must consider issues

of approximation.

In this paper, we explore the approximation problem of coloring worst-case

graphs with as few additional colors as possible. That is, we consider the
following problem:

Given an n-vertex k-colorable graph, how many colors do you need in order

to color the graph in polynomial time?

In particular, we present here algorithms that improve upon previously known

guarantees for coloring graphs of constant chromatic number. We will not be

so concerned with precisely optimizing the running time of the algorithms (so

long as they are polynomial); instead we focus more on the quality of the

approximation. Because 3-chromatic graphs are the simplest and in a sense the

most fundamental graphs for which optimal coloring is NP-hard, much of this

paper will focus on the special case of coloring graphs of chromatic number 3.

We then describe extensions of these results to graphs of higher constant

chromatic number.

A second standard approximation issue that we do not consider here is to

provide algorithms that find optimal colorings for large or nicely characterized

subsets of the inputs. Work along this direction has been done by Kucera

[1977], Turner [1988], Dyer and Frieze [1989], and Blum [1991]; in particular,
these results show that large classes of random or “semi-random” k-chromatic

graphs can be optimally colored with high probability.

1.1. PAST WORK. For graphs of constant chromatic number, the first non-

trivial worst-case approximation result was due to Wigderson [1983]. Wigderson

gives an algorithm to color any n-vertex 3-colorable graph with 0(A) colors,

and more generally to color any)c-colorable graph with 0(lZ1– (l/~~ – 1))) colors.

More recently, several researchers, Berger and Rompel [1990], Linial, Saks,

and Wigderson (personal communication), and Rahgavan (personal communi-

cations) independently improved this bound to

o((72/log n)’-’’]))]))

colors, which for k = 3 results in a coloring of 3-colorable graphs with

O(fi/ ~~) colors.
The result of Berger and Rompel and others was important because no

progress has been made for some time and it showed that K was in no sense a

lower bound for coloring 3-colorable graphs. However, for the kinds of tech-

niques used it was clear that, say, 0(6 /log~ n) colors would be completely

out of reach. For general graphs of arbitrary chromatic number, the best

algorithmic result known to data is due to Ha11d6rsson [1993]. Halld&-sson’s

algorithm has a pe~formance guarantee—that is, a ratio of the number of colors

used to the chromatic number–of O(n(log log n)z/(log n)S). This result is

based upon an algorithm by Boppana and Halld6rsson [1990] for the Indepen-

dent Set problem, which finds an independent set within an n/(log n)z factor
of the maximum.

The difficulty in improving the algorithmic results has motivated work on

lower bounds for this problem. Very recently, Lund and Yannakakis [1993],

based on work of Arora et al. [1992]. have shown that for some ~ >0, the

472 AVRIM BLUM

chromatic number cannot be general be approximated to a ratio better than ~z’

unless P = NP.

There has also been recent work on coloring graphs presented in an on-line

manner: graphs presented one vertex at a time in some arbitrary order, with

the requirement that an algorithm color the vertex presented before the next

one is shown. Vishwanathan [1990] presents an algorithm for such a model that

uses a number of colors within a logarithmic factor of the Wigderson bound.

1?. N~,v R~zu~~s. In this paper, we present an algorithm that uses a quite

different strategy from the previous approaches, and colors any 3-colorable

graph with 0(nj’ ‘log5i~n) colors. Thus, we improve the previous bound of

O(fi/ ~~) colors and break a “soft-0(&) barrier” (that is, ignoring

polylogarithmic factors). The algorithm also extends to graphs of higher con-

stant chromatic number and improves upon the previous bounds for such

graphs. We present the new algorithm in two parts: the first part (Section 4)
‘ s‘“(l)) colors, and the second part (Sectioncolors 3-colorable graphs with 0(n-’

5) achieves the better bound claimed above. The strategy used also suggests a

plausible path for further significant reductions in the color bounds, and a

discussion of this is given in Section 7.

The algorithms given here are based on using information obtained from

examining second-order neighborhoods of vertices and not just immediate

neighborhoods as in previous approaches. The new algorithms are motivated by

techniques that would work if the graph were in fact chosen randomly, and this

motivation and the general flavor of the algorithms are given in Section 3.

Some of the work in this paper has previously appeared in extended abstract

form [Blum, 1989; 1990], and additional results with more detailed discussion

appears in [Blum, 1991].

2. Notation, Definitions, and Prelious Algorithms

In this section, we review some standard graph-theoretic definitions and

introduce basic notation that will be used throughout this paper. At the end of

the section, we will describe some previous worst-case coloring algorithms in

order to introduce a few useful techniques,

Given a graph G, let V(G) denote the vertices of G and E(G) denote the

edges of G. We will use N(L1) to denote the neighbodzood of a vertex L’ and

d(~) to denote the vertex degree. That is, for G = (V, E):

N(~I) = {w c Vl(~),w) ~E}, and

d(~) = IN(zI)I.

It will also be convenient to define the degree D(S) of a set of vertices S by:

D(S) = ~ d(LI),
LELS

and the neighborhood N(S) of set S by:

Notice that D(S) may be much larger than IN(S)1 if vertices in S share many

neighbors in common. We will also use the term “distance-2 neighbors” of a

New Approximation Algorithms for Graph Coloring 473

vertex L) to mean the set N(N(LI)). Note that if N(v) # ~, then v E N(N(LJ)).

Finally, for S a set of vertices in G, the graph H = GI ~ is the subgraph of G

induced by set S. That is,

An independent set in a graph is a set of vertices no two of which are

adjacent to each other. A vertex cover is a set W such that V – W is

independent.

As mentioned in the introduction, the chromatic number of a graph is the

least number of colors needed to color the graph so that no two adjacent

vertices are given the same color. As is standard terminology [Nelson and

Wilson 1990] we say that a graph is k-chromatic to mean that the chromatic

number is exactly k, and that a graph is k-colorable to mean that the chromatic

number is at most k. For the most part, this distinction will not be important

and we will use the terms interchangeably. We say that an algorithm optinlally

colors a graph if it colors with the fewest number of colors possible.

For the special case where G is a 3-colorable graph, we use red, blue, and

green to denote the colors of vertices in G under some legal (but unknown)

3-coloring. We also use these terms to denote the sets of vertices belonging to

each color class under that legal coloring.

For functions f and g we say g(n) = d(f(n)) to denote th~t g(n) =

0(f(n)log’n) for some constant c. Similarly, we will use g(n) = 0(f(n)) to

denote that g(n) = fl(f(n)/logcn) for some constant c. We also use “g(n) >>

f(n)” to mean that f(n) = o(g(rz)). Finally, the term “log n“ will be used to

denote logzn, and log Pn will be used to denote (logn)p.

2.1. PREVIOUS ALGORITHMS. We first just note that 2-colorable graphs can

easily be 2-colored in polynomial time.

Let us now review Wigderson’s algorithm [1983] for the special case of

3-colorable graphs Wigderson’s algorithm looks at the immediate neighbor-

hoods of vertices, and uses the fact that in a 3-colorable graph the neighbor-

hood of any vertex is 2-colorable. The algorithm proceeds as follows: If there

exists a vertex of degree at least A in the graph, then we color its neighbor-

hood with two unused colors and then delete the colored nodes from the

graph. If all vertices have degree less than h, we can greedily A-color the

remaining graph, since with A colors, for each vertex we are guaranteed that

at least one color is not used on its neighbors. The total number of colors used

is at most 3&. If we pick a degree cutoff of ~ instead of h, we can

optimize the constant for this type of strategy to m.

The improvement to O(k / ~~) of Berger and others mentioned previ-

ously is more complicated, but essentially results from choosing O(log n)

starting vertices instead of one. The precise algorithm is described in [Berger

and Rompel, 1990]. We will revisit this algorithm in Section 3.2, where the

algorithm and bounds guaranteed follow as an easy corolla~ of the machinery

described there.
In contrast to the above strategies, the algorithm presented here is a

multipronged attack. The main idea of the new approach is to take advantage

of information from not just the immediate neighbors of vertices, but from

distance-2 neighbors as well. One difficulty with looking at distance-2 neigh-

474 AVRIM BLUM

hors is that they have not so obvious a structure as the immediate neighbors.

For example, the immediate neighborhood, as noted above, is 2-colorable; the

structure of the distance-2 neighbors will have to be more carefully brought

out.

3. New Algorithms: Preliminaries

3.1. THE BASIC IDEA OF THE NEW APPR~ACH. The previous best algorithms

for coloring 3-colorable graphs all used 0(n li~) colors in the worst-case. This

section describes the basic for an algorithm to color any n-vertex 3-colorable

graph G with O(n”) colors, for some a < ~. Note that to do so, it is enough,

as in Wigderson’s algorithm, to find an independent or 2-chromatic set of size

fl(n [- U), since that set can be colored with 1 or 2 colors and the procedure

repeated on the graph remaining.

The idea of the new algorithm is to try to make progress from examining

distance-2 neighbors. We will describe the motivation for the approach by

considering the question: “what if the edges in the graph were distributed

randomly?” That is, what if after an adversary decided which nodes to place in

the sets red, blue, and green (the color classes under a legal 3-coloring

unknown to the algorithm) a coin of some bias p was then flipped for each pair

of vertices u, LI of different colors to determine whether edge (ZL,L)) would be in

t~e graph’? In that case, the following strategy finds an independent set of size

fl(nz/3).

First, we may assume there are about the same number of red, blue, and

green vertices, since otherwise we could immediately separate at least one of

the color classes from the others by just looking at the vertex degrees. 1 Second,

we may assume that the vertices have average degree at least n l/’, since

otherwise we could just greedily gather an independent set of size Wnz’3).

Finally, for simplicity, we assume that the average degree d is at most n li~ -‘

for some ~ >0 (so we have rzl/7 < d < H112- ‘). This last requirement will

simplify the motivational argument, but is not necessary.

Suppose L is a red vertex. Then, the neighborhood of Z) consists of blue and

green vertices, with approximately half of each color if the numbers of blue

and green vertices in the graph are roughly equal. Each blue vertex in N(L)

similarly has about half green neighbors and half red neighbors, and each

green vertex has about half blue neighbors and half red neighbors. So, if we

look at the set of the distance-2 neighbors S = N(N(~)), red vertices are

significantly more predominant than blue or green vertices. In fact, about half

of S is red, a quarter blue, and a quarter green, since we have assumed d is
small enough (at most n ‘/z-‘) that not many vertices of S are neighbors of

several vertices of N(u). Thus, S is a set of size at least Q(n2/3) that has within

it an independent set (the red vertices) of about one half the size of S.2

10nce we have separated one of the color classes from the others, we can then easily ~-color the
graph remaining. This fact about the sizes of the color classes for random graphs does not

generalize to worst-case graphs, and in fact, there IS no analog of this step used m the worst-case
~lgonthm. It IS inserted here solely to simphfy our picture of the graph.

Wc can remove the restriction d < nl ‘2-’ by choosing S to be a subset of LV(lW L)) generated
by conceptually deleting edges from the graph at random until the average degree is below
~1/2– E, and then letting ,S = N(N(LI)) in this new graph.

New Approximation Algorithms for Graph Coloring 4’75

Given a set of size fl(n2\3) containing an independent set of size #~1, and

therefore a verte~ cover of size ~1S1, we can algorithmically find an indepen-

dent set of size Q(nz/3) by applying a vertex-cover approximation algorithm

due to Bar-Yehuda and Even [1985], and, independently, to Monien and

Speckenmeyer [1985]. (Their algorithms differ slightly but the bounds are

essentially the same; a version of their algorithm is described in the appendix

for completeness.) Their algorithm finds a vertex cover of size at most

(log log n
2–

log n)

times the size of the minimum vertex cover in an n-node graph. If we apply the

algorithm to the graph induced by S, we find a vertex cover W in S of size at

most

[

log log /s1
:1s12-

)log 1s1 ‘

which is at most IS I – IS 1/(4 logl S 1). So, the complement, S – W, is an inde-

pendent set inside S of size at least Q(lS[/log ISI) = &nzf3). Thus, in the case

where the edges in the graph are chosen by a random process, we have found a

large independent set.3

Worst-case graphs, however, are not random. Instead, we will use various

techniques to force the graph to have properties of random graphs—or at least

weak versions of these properties—that we need. One such property is that of

being “well-distributed”: we want N(N(LJ)), or at least an easy-to-select subset

of N(N(~’)), to have nearly half red vertices, so that the vertex-cover approxi-

mation algorithm can be used. The second such property is an expansion

property: we want the selected subset of N(N(v)) to be significantly larger

than N(~), so that our performance is much better than that achieved by

looking only at immediate neighbors.

Sections 4 and 5 describe one general method for proving the existence of a

form of good distribution in worst-case graphs and two methods for forcing

expansion. The first method for forcing expansion (described in Section 4) is

s~mple and elegant and results in a coloring of any 3-colorable graph with

0(n2/5) colors; the second (described in Section 5) is more complicated, but

results in an improved bound of 0(n3/8) colors.

3.2. USEFUL DEFINITIONS OF PROGRESS. In order to more easily describe

and analyze the coloring algorithms presented, it will be useful to have several

formal notions of “making progress” towards an jln)-coloring of an n-vertex

graph. These notions simplify the analysis by allowing us to aim for intermedi-

ate goals. Although we will only need to consider ~(n) a function of the form

O(n” log ~ n), the notions of progress in fact hold for a more general class of

“nearly-polynomial” functions, as defined below.

3In fact, rdndom 3-colorable graphs are easy to actually 3-color for a wide range of edge
probabilities [Dyer and Frieze, 1989; Turner, 1989; Blum, 1991]. In [Blum, 1991], we show how to
3-color rdndom 3-colorable graphs for p > n “(11- 1 (i.e., where the average degree is at least n‘
for some e > O).

476 AVRIM BLUM

Definition 1. A function f over Z+ is “nearly-polynomial” if it is nondecreas-

ing and there exist constants c, c’ > 1 such that for all sufficiently large N,

f(2N) z cf(N) and f(2N) < c’f(N).

For example, if f(n) = nl!~, then we may choose c = c’ = 2]/2. If f(n) =

na log P n for a > 0, then we may choose c = 2“(1 – ~) and c’ = 2“(1 + .s)

for any constant 6>0.

Three important ways of making progress towards an f (n)-coloring of an

mvertex k-colorable graph are defined as follows:

Progress Tvpe 1 [Large-IS]. Find an independent or 2-colorabled set S of

size Q(12/f(n)).

Progress Type 2 [Small-N bhd]. Find an independent or 2-colorable set S

such that IN(S) I = O(f(n)lSl).

Progress Tvpe 3 [Same-Color]. Find two vertices that must be the same

color under any legal k-coloring of the graph.

Progress Type 1 “makes progress” because we can color the set found with

at most two colors and then continue on the remaining graph with a new set of

colors. The idea for progress Type 2 is that we can use it to find many different

2-colorable sets, each of which is independent of the others; combining the sets

found gives us a large 2-colorable set and thereby progress of Type 1. Progress

Type 3 always helps us towards any approximate coloring. More formally,

besides showing that each type of progress is useful individually, we would like

to say that any combination of the three types of progress, in any order, yields

an 0(f(n))-coloring of an n-vertex k-colorable graph.

LEMMA 1. If there exists a poljmomial-tirne algorithm .ti that is gLlaranteed

giuen any k-colorable graph of m Lertices, to make progress of either Type 1, 2, or 3

tolvards an 0(f (nz))-coloring (where f is near~-polynomial), then there exists a

polynomial-time algorithnl 47 that colors any n-Lerte.x k-colorable graph G with

O(f(n)) colors.

Note that if we do not care about constants, we can state Wigderson’s

algorithm for coloring n-vertex 3-colorable graphs using progress of types 1

[Large-IS] and 2 [Small-Nbhd] as follows: If a vertex L’ has a neighborhood of

size fl(n Iiz), then we make progress of Type 1 using its neighborhood;

otherwise, IN(L))I = 0(1 “ n]iz) so we make progress Type 2.

We can also state simply the algorithm of Berger and Rompel [1990] to color

any 3-colorable graph with 0(& / ~~) colors using these types of progress.
Select a subset 5’ of 3!og n vertices in graph G arbitrarily and examine every

independent subset S of S of size (log n). Note that there are at most

(1
‘1~,~ < n3 such subsets, so this can be done in polynomial time. For each

subset j, test to see if its neighborhood is 2-colorable; this test will succeed for

some S since at least one such subset must consist of vertices all the same

color in some legal 3-coloring of G. Now, if IN(~)1 z fi ~~, we have made

4Technlcally, an mcfependent set is ~-colorable. We list both here to emphasize there IS no need
for the set ,S to require 2 colors. Also. we label this type of progress by “LARGE-IS” since gwen a
Z-chromatic set. one can easdy fmd an mdepcndent subset of only a fzactor of 2 smaller.

New Approximation Algorithms for Graph Coloring 477

progress of Type 1. If lN(~)l < fi~~, then we have made progress of

Type 2.

We now prove Lemma 1, showing that these types of progress really do

“make progress.”

PROOF OF LEMMA 1. First, if algorithm .@ ever makes progress of Type 3

[Same-Color] on a subgraph of G, then it is clear we can just merge the two

vertices found into a new vertex and start again from the beginning: In doing

so, we remove one vertex from G and use no colors. Thus, we may assume

from now on that & only makes progress of Types 1 or 2 when applied to any

subgraph of G.

Claim. If for some constant ● >0 we can always find a 2-colorable set of

size ~m/f(m) in a k-colorable graph of }72 vertices, then we can achieve an

0(f(n))-coloring of G as follows: We find such a set in G, color it with two

colors, remove those vertices from the graph, and repeat.

PROOF OF CLAIM. The proof is just a straightforward calculation given

below. The number C(m) of colors used satisfies C(m) s 2 + C(m –

em/f(m)). For each m’ in the range [m/2, m], we have:

(Em
C(m’) <2 + c m’ – —

f (}?1’) 1

(E(m/2)
52+ cm-

f(m) 1

Applying this last inequality f(m)/~

C(nz/2), which implies

-

(because f is nondecreasing).

times, we get C(m) < 2f(rrz)/~ +

C(m) < ‘[f(m) +f(m/2) + o“. +f(l)l
E

[

11
s; f(llz)l+:+=+—+ . . .

c’
+0(1)

c ~. 1
(since f(r) > cf (r/2) for r large enough)

= o(f(m)).

(End proof of claim.) To prove the lemma, we just need some algorithm J%”
that on any k-colorable graph of m vertices finds a 2-colorable set of size

fl(rn /f(m)). Algorithm =’ works as follows:

On input (V, E), where m = IVI,

(1) Initialize set U to the empty set and initialize V’ to V.

(2) While IV’I z nz/2, do:

(a) Let (V’, -E’) be the subgraph induced by the vertices in V’. Run
algorithm AZ on (V’, E’).

(b) If.~ returns with progress of Type 1 [Large-IS], then since IV’ I z m/2,
we have a 2-colorable set of size

(since f is nearly-polynomial), so halt and output that set,

478 AVRIM BLUM

(c) If JY returns with progress of Type 2 [Small-Nbhdl, let S denote the set
returned by .w’. Now, update:

(J+UUS

v’ + v’ – (s Ufv(s)).

Notice that in this step, each time we add vertices to U, we remove all

their neighbors from V’. So, we maintain the invariant that U has no

neighbors in V’.

(3) Halt and output U.

If we reach step (3) in the above algorithm, it must be that at that point,

IV’I < m/2. Set U is a 2-colorable set since each set S added to U in step

(2)(c) is 2-colorable and by the invariant mentioned in (2)(c), the sets S are all

independent of each other (thus, we may use the same 2 colors on each set S).

Set U is also large because, for each set S of size r found in step (2)(c), we add

r vertices to U and remove at most r + t~f(m) vertices from V’ for some

constant t by the definition of progress Type 2 [Small-N bhd].5 Thus, IV – V’ I

is at least m/2 and IV – V’ I is at most IUI + t lUlf(, nt). Combining the two

inequalities, we find IUI + tlUlf(m) z m/2, which implies IUI = fl(m/~(m)).

This large 2-colorable set is exactly what we needed from algorithm g’. ❑

By Lemma 1, we now may just aim for progress of one of the three types in

our coloring algorithms. This fact will simplify the statements and correctness

proofs of algorithms presented in Sections 4, 5, and 6.

Also, as a simple application of these types of progress, note that progress

Type 2 [Small-Nbhd] can be used to guarantee that for each vertex 1, the set

N(N(u)) has size 0(jln)2): we make progress if IN ([1)1 s jln) since {u} is an

independent set and make progress if IN(IV(L’))1 < ~(H)1N(L’)1 since N(c)) is

2-colorable. Thus, we get the following corollary. (We assume here that ~ is

“nearly-polynomial” as in Definition 1.)

COROLLARY 2. If G is an tz-Lertex 3-colorable graph such that IN(N(L’))1 =

0(f(n)2) for sonle vertex L’, then we can make progress towards an 0(f(~z))-color-

ing of G.

3.3. A FEW ADDITIONAL DEFINITIONS. We now present a few additional

definitions that will be needed in Section 4 and 5. Given a graph G = (V, E)

on n vertices:

— For L G V, let LZ!T(L1) = IN(L)) n T1. We call dT(u) the degree into T of LI.

— For S,T c V, let ~r(S) = Z , . ~d~(~l). We call ll~(S) the degree into T of
S. Note that d,({)) = D{LJT) and ~~(~) = D,(T).

— Let 8 = ~(n) = l\(510g n).

— Let lJ = {L) G Vlci(L’) G [(1 + 8)J,(1 + 8)]+’)}for j = 0~1,2,... . That is,

we divide the set of vertices of degree at least 1 into bins 1, so that in each

bin, the ratio of the degrees of any two vertices is less than (1 + 8). The

number of bins is at most

1 1
logl+an S (1 +o(l))~lnn < ~loglz.

‘Here we use the fact that ~ IS nondecreawng.

New Approximation Algorithms for Graph Coloring 479

— For S q V, let N,(S) = {U G N(S)ld~(v) ● [(1 + ~)’, (1 + 8)’+ ‘)} for i =

0,1,2, In other words, N,(S) (O < i s log ~+ ~n) is the subset of vertices

in N(S) that are hit by at least (1 + ~)’ and less than (1 + /i)z+ 1 edges

from S.

4. Coloring 3-Colorable Graphs: First Algorithm

In this sectio-n, we describe an algorithm to color any n-vertex 3-colorable

graph with O(rLO 4, colors. As mentioned in the last section, the algorithm

consists of two major parts. First, we force the graph without loss of generality

to have a useful expansion property. Second, we find and take advantage of a

form of good distribution of edges that we show must exist in any 3-colorable

graph. Some of the theorems we prove, in particular those in Section 4.3

concerning the distribution property, hold more generally for graphs con-

strained only to have large independent sets. This fact will be useful for us later

in Section 6 for extending these techniques to graphs of higher chromatic

number.

Throughout this section, we assume f is a “nearly-polynomial” function as in

Definition 1.

4.1. FORCING EXPANSION. We now show that if our goal is to color a

3-colorable graph G with O(f(n)) colors, then we may assume without loss of

generality that no two vertices sh~re more than n/[f(n)]z neighbors. So, for

example, if we wish to color with O(n”) colors, we may assume for all u, L) c V,

that IN(u) n N(LI)I s nl-z” (for a = 0.4, the shared neighborhood may have
size at most no 2). This is our first method for forcing a useful form of

expansion in the graph. Given the three methods for making progress defined

in the last section, this method for forcing expansion falls out easily.

THEOREM 3. If G is an n-uertex 3-colorable graph containing L)ertices u and L’

such that

()IN(u) r7N(L)1 = f) n
[f(Fd]2 ‘

then we can make progress of Type 1, 2, or 3 towards an 0(f(n))-coloring of G.

PROOF. Suppose u and u are two vertices that share a neighborhood

S = N(u) n N(L)) of size fl(n/[f(n)]2). Clearly, S is 2-colorable since it is a

subset of the neighborhood of u. So, if IN(S)/ s n/f(n), then we have made

progress Type 2 [Small-Nbhd]. On the other hand, if IN(S) I > n/f(n) and

N(S) is 2-colorable, then we have made progress of Type 1 [Large-IS]. The last

possibility is that N(S) is not 2-colorable (and that it is large, M we will not
need this fact). But, this last case means that u and u must be the same color

under any legal 3-coloring of G. The reason is that if u and u could possibly be

different colors under some legal 3-coloring (say blue and green), then S

would be monochromatic (red), so N(S) would be 2-colorable (blue and

green). So, if our attempt to 2-color N(S) fails, then we make progress of Type
3 [Same-Color]. ❑

We can use the same argument as above to guarantee without loss of

generality that a selected set S of size 0(rz/f(n)2) in G is not monochromatic

under any legal 3-coloring of G. In particular, suppose S were monochromatic,

480 AVRIM BLUM

so ~(~) is 2-colorable. Then, if IAT(s)I z rzl~(n) we make progress Type 1

[Large-IS], and if 1~(~)1 < n\~(n) we make progress Type 2 [Small-Nbhd]. So,
we get the following corollary.

COROLLARY 4. Gilen an independent set S of size Q(n/f (n)2) in an n-vertex

3-colorable graph G, we can either make progress towards an 0(f(~l)) colo~ing of

G or else guarantee that the uertices of S are not all the same color under (my legal

3-coloring of G.

Although this corolla~ is not be immediately useful for us here, an improved

method for forcing expansion described in Section 5 consists in part of an

improvement to this corollary, and leads to better coloring guarantees.

4.2. THE ALGORITHM. We now describe the algorithm for coloring n-vertex

3-colorable graphs with 0(n2’5 log8’5n) colors. As mentioned in the last

section, the algorithm uses a vertex cover approximation algorithm of Bar-

Yehuda and Even [1985] and (independently)

[1985] that finds a vertex cover of size at most

[

log log n
2–

2 log n)

times the size of the minimum vertex cover in

Monien and Speckenmeyer

a graph. We will call their

algorithm the BE / MS algorithm. A simpler version of t-heir procedure for the

special case in which it is used in this paper is given as Algorithm Approx-IS in

the appendix.

Algorithm First-Approx:

Given: G = (V, E), a 3-colorable graph on n vertices. Let ~(n) = n2’’5(log n)s”.
Output: Progress of Type 1, 2, or 3 towards an 0(jlrz))-coloring of G.

(1)
(2)

(3)

(4)

[Min degree]. For each vertex L’, if d(~) < ~(n), make progress Type 2 [SmalI-Nbhdl.

[Expansion]. For each pair of vertices u, t), if IN(u) n JV(~)l > n/[~(n)]2, then make

progress using Theorem 3.
[Dist-2 Neighbors]. Otherwise, for each vertex c, for each r, J G {0. 1,...,5 log2 n}:

Let ~,, , =~(fv(~)nZ,).

(Recall the definitions of Section 3.3.)
WC amroxl. Run the BE/MS Vertex-Cover armroxirnation abzorithm (or ecwivalentlv,
the I~6ependent-Set approximation algorithm ‘Approx-IS in-the appendk) on ea~h

~,, ,. If we find an independent set of size Cl(n ~/ ‘/(log n)S’J), we have made progress
Type 1 [Large-IS].

The next two sections (4.3 and 4.4) are devoted to proving the following
theorem.

THEOREM 5 (MAIN THEOREM). Algorithm First-Approx makes progress of

Types 1, 2, or 3 towards an 0(nz’’5(log n)s\5)-coloring of any n-lerte.y 3-colorable

graph.

Using Lemma 1 (the usefulness of making progress), we get the following

corollary.

COROLLARY 6. There exists a polynomial-time algorithm that will color any

3-colorable n-lertex graph with 0(n~~5(log n)s/5) colors.

New Approximation Algorithms for Graph Coloring 481

Let us calculate the running time of the coloring algorithm. The BE/MS

algorithm runs in time O(Nkf) on any N-vertex graph with &l edges. We may

assume for simplicity that the graph in Step 4 of algorithm First-Approx has

size at most n3/5 else we iust remove excess vertices at random. So, the runnins!

time of algorithm First-Approx, which is dominated by Steps (3)

most:

[(n vertices) “ (logznj’s) . (log’n i’s) in Step(3)l

x [n~t’(n’ls)’ for vertex cover in Step (4)]

= &n14/5),

and (4), is al

yhich is polynomial in n. Note that this is the time needqd to give one color to

fl(n3/5) vertices. One may have to run the algorithm 0(n2/5) times in order

to color the entire graph.

4.3. FORCING GOOD DISTRIBUTION. From the last sections, we know that if

we wish to color an n vertex graph with O(f(n)) colors, then we may assume

that the graph has minimum degree f(n) (or else we make progress Type 2

[Small-Nbhd]) and no two vertices share more than n/[f(n)]2 neighbors (or

else we make progress with Theorem 3).

The goal of this section is to show how, given such a graph G, to find a small

number of subgraphs such that at least one must be both nearly half red under

some legal j-coloring of G (at least (1-– 1\log n)\2) of i$ vertices red), and

large (size 0(f(n)4/n), which equals Q(n3/5) for f(n) = Q(zz2/5)). In particu-

lar, we show this holds true for one of a small number of subsets of N(N(~’))

for some vertex Z) in the graph.

We assume without 10SS of generality that red is the color in G such that

D(red) = max(ll(red), ll(blue), l)(green)). That is, of the three colors, red is
the color with the most edges incident. The assumption on red implies that

D(red) > ~(ll(blue) + D(green)), so

Q,~(blue u green) > ~D(blue u green). (1)

Note also that if d is the average degree of the vertices in G, then Wed) >
dlredl.

4.3.1. The Basic Approach, and a Problem with the NaiLe Strategy. In order

to find a large subgraph that is nearly half red, the first step will be to find a

large subset S G blue u green such that nearly half of the edges leaving S

enter into red vertices. We know that if we look at the entire set blue u green,
at least half of the edges leaving that set enter into red vertices by Eq. (l). The

problem is: we do not know how to find blue U green. We can, however, look

at subsets of blue U green by considering vertex neighborhoods, many of

which (for red starting vertices) will be blue and green.
Given the property of blue U green described in Eq. (l), one might expect

that this property would hold for the neighborhood of some vertex as well: that
is, that for some u = red, we would have

Dred(N(LI)) > ;D(N(d).

482 AVRIM BLUM

Unfortunately, this may not necessarily be the case. Basically, the problem is

that a blue or green vertex w affects the sum of the ~,e~(ifl t])) over u ● red
in an amount proportional to the square of its degree into red, but w affects

~red(blue U green) in an amount only linear in its degree. For a more detailed

counterexample to this naive strategy, see Blum [1991].

Essentially, the difficulty occurs when vertices have wildly varying degrees.

Although one can also find counterexamples that hold even when all vertices

have degrees in some range [rLa-’, na+’] for any e >0, if we restrict the vertex

degrees extremely tightly then the desired property does hold. That is, if the

degrees are nearly identical, then it turns out there does exist L’ ● L“ such that

Al u) has nearly half the edges leaving it entering into red vertices. This is the

purpose of the bins 1~ and is the intuition for Theorem 7 below.

Once we have a set S G N(u) with nearly half the edges leaving it entering

into red vertices, we use a similar idea to find a large set inside N(S) which is

nearly half red. The trick again is to separate vertices according to degree,

which is the purpose of the sets N,(S). This step is handled by Theorem 8.

4.3.2. Theorems and Proofs. We now describe the theorems that allow the

above basic idea and the algorithm First-Approx to succeed. These theorems

are stated in terms of not-necessarily 3-colorable graphs containing a large

independent set R. (The symbol “R” is used to be suggestive of the set red.)

THEOREM 7. GiL1en an n-lertex graph G = (V, E) with a[erage uertex degree

d, and an independent set R such that (1) D~(V – R) > AD(V – R) for some

O < A < 1 and (2) D(R) > dlRl, then for some L) ● R and some bin 1]:

S 2d
(1) lfV(LJ) n J 2

log1+8n’

(2) D~(N(~I) n 1,) z A(l – 3t3)D(N(u) n 1,).

In other words, for some LI = R, the set N(~)) n Z, is a reasonably large

fraction of N(L,) and has almost a fraction A of the edges incident to it going

into R. We now look at the neighbors of N(L’) n 1, and show that for some i,

the set N,(AX L)) n 1,) has the properties we need.

THEOREM 8. GiL1en an n-uertexgraph G = (V, E), a set R c V, and A’ E [0, 1]:
For any set S such that D~(S) > A’D(S), there must exist some i < log, + ~n

such that:

SDR(S)
(1) D N,(s,n R(s) ~ ~og,+an ,

(v) IN(S) n RI

Iw(s)l
2 (1 – 28)1.

Assuming for now the correctness of Theorems 7 and 8, we can prove a

corollary showing why at least one of the sets created in Step 3 of Algorithm

First-Approx will both be large and contain an independent set of nearly half

its vertices (and so be of the right form for the vertex-cover algorithm used in

Step (4)).

COROLLARY 9. Give)l an n-lertex 3-colorable graph G = (V, E) such that (1)

no two [jertices share more than s neighbors and (2) G has minimum degree

New Approximation Algorithms for Graph Coloring

d,~l~ z 10(logl ~ ~n)/t$, then for some 1’ = V and some

T= N,(N(v) nIJ)

483

i, j E [0,5 logzn], the set

has at least fl((d,~,~)2/(s log7n)) uertices of which at least a fraction

()

1
;l– —

log n

are colored red under some legal 3-coloring of G.

PROOF OF COROLLARY 9. By definition of set red in G, the conditions of

Theorem 7 are satisfied for R = red and A = l\2 (see Eq. (1)). Let vertex L

and bin 1, be such that claims (1) and (2) of Theorem 7 are satisfied for

S = N(LI) n I,. By claim (2) of Theorem 7, set S satisfies the conditions of

Theorem 8 with A’ = +(1 – 38). Let i be the index such that claims (1) and (2)

of Theorem 8 are satisfied and let T = N,(S). Then:

8D~(S)
D ,nR(s) >

(logl+ an)

8A(1 – 38)d~,,lSl
>

logl+a n

(Theorem 8, claim 1)

(Theorem 7, claim 2)

(for all u, d(~) a d~,”)

(2)

(Theorem 7, claim 1)

(1
using logl+~n = O

())
; log n

(’=*)
Since no two vertices share more than s neighbors and S c N(u), we know no

vertex w # u in T has more than s neighbors in S. Thus, we can lower bound
the size of T by [DLY(T) – ds(~)]/s, which is at least [ll~n R(S) – lSll\S. BY

Eq. (2) and our assumption d~,~ _> 1010gl+8n/8, we have ISI < ~D~n~(S).

so:

D T-lR(s)
ITI > ~~

()

d~,~
‘0

(s log7n) “

484 AVRIM BLUM

Also, the fraction of red vertices in T is large:

IT n R]

ITI
>A(l–28)(1– 38)

(Theorem 7 claim (2), and Theorem 8 claim (2))

>;(1–50
(

1
by definition of red, we have h > ~

1

Thus, set T satisfies both claims of the corollary. ❑

Before proving Theorems 7 and 8, we state a simple combinatorial lemma:

LEMMA 10. Gillen b balls of which r me red, all placed in k boxes, then for any

● (0 < ● < 1), there is some box with at least ●r/k red balls such that the ratio of

the number red balls to the total number of balls inside that box is more than

(1 – ~)r/b.

PROOF. Throw out all boxes with fewer than er/k red balls. The minimum

possible ratio of red balls to total balls left is: (r – ●r)/(b – ~r) since at worst

we throw out k boxes containing only red balls. This ratio is strictly greater

than (1 – E)r/b. So, by pigeonholing, there must exist at least one box left with

a ratio of red balls to total balls at least this large. ❑

PROOF OF THEOREM 7. For convenience, we call vertices in the indepen-

dent set R “red”. First, we show there exists a good bin. We are given that

11~(~ – R) > AD(V – R). We apply Lemma 10 where there is one “box” for

each of the logl+ ~ n bins I,. For each L’ G V – R, if z) = I,, we place d(~l)

“balls” of which d~(~) are red into box j. So, the number of balls in box j

equals lX1, n (V – R)) out of which DR(IJ n (V – R)) are red, and the
number of balls total is D(V – R) of which DR(~ – R) are red. Lemma 10

tells us, taking E = 8, that for some j,], if we let 1 = 1,(, n (V – R), then:

8D~(V– R)
D~(I) >

(log, +an)
and

DR(l) > A(l – 8) D(I).

(3)

(4)

Informally, the set 1 on non-red vgrtices has the property that many edges

have endpoints in 1 (since D~(1) = Q(D(V – R)) by Eq. (3)), that almost a A

fraction of the edges leaving 1 enter red nodes (Eq. (4)), and that all nodes in 1

have similar degrees (since 1 c 1,,,). We do not know how to distinguish

between edges with endpoints in R and other sorts of edges, so we do not know

which 1, contains 1, only that such an 11 must exist.

We now show that for some u = R, the set N(L1) n 1 satisfies claims (1) and

(2) of Theorem 7. Note that this completes the proof because N(v) n [1,,] n
(V – R)] = N(u) n 1,(, since L G R and R is an independent set.

New Approximation Algorithms for Graph Coloring 485

Define:

R’ is the set of red vertices such that A/(U) f’ ~ satisfies claim (1) of Theorem

7. We first show that nearly A of the edges from the set 1 enter into R’ and

then use this to show that for some ~) = R’, claim (2) of Theorem 7 holds. So,

from the definition of R’, we have:

(since D.(V -R) = D(R) z dlRl)

(by Eq. (3))

2 DR(I)(l – 8).

Finally, applying Eq. (4), we have:

DR,(I) > Ml – 213) D(l). (5)

We now claim that for some u ~ R’, the set N(LT) n I satisfies claim (2) of

Theorem 7. Essentially, the reason for this is all vertices in 1 have similar

degrees. The actual proof is by contradiction, using a counting argument.

Suppose for contradiction that: 6

For all [1 E R’, D~,(N(LJ) n I) < Ml – 3L3)D(N(LI) n I). (contr6)

If this is the case, then it must also be true that:

Now, instead of writing each quantity as a sum over u ● R’, we would like to

write each as a sum over w = 1. We can do this, as follows:

We may write the sum

as

‘It is always dangerous to display false equations, so we are labeling these inequalities with the
symbol “contr” to emphasize that they are just being assumed for contradiction.

486 AVRIM BLUM

by the definition of l). Now, each vertex w c 1 is counted in the inside sum

~R(w) times since w is in the neighborhood of ~~,(w) different vertices of R’.

Thus,

Similarly,

Applying the

~ DR(N(u) n 1) = ~ dR(w)2
L●R’ WE I

inequality (contr 7) we have assumed for contradiction, we get:

~ dR(w)2 < A(I - 38) ~ Ci,(w)d(w)
WE[WEI

< A(I – 38) ~ dRr(w)(l + 8) ’(’+1
w= I

(since d(w) < (1 + 8)’”+’ for all w ● 1)

= A(l – 38)(1 + 8) J’’+1DRI(I).

(by definition of 11~) (8)

For any collection of values, the average of the squares is at least the square

of the average. Thus:

; ~ L&(w)’>
WGI [&d’Jw)12=“s

so, DR(I)2/111 < x .,, d~,(w)2. Combining this fact with Eq.

*DRr(l)’ < A(l – 38)(1 + i3)J”+1DR(I).

Multiplying both sides of Eq. (9) by

38)(1 + a) ‘(’+’/11

38)(1 + 8)D(I)

28) D(I).

lZ]/DR,(I), we get:

(8), we have:

(9)

(since d(w) > (1 + 8)’(1for all w = 1)

DR(I) < A(l –

s A(l –

< A(l –

This contradicts Eq. (5) and completes the proof of Theorem 7. ❑

PROOF OF THEOREM 8. We are given a set S such that DR(S) > A’D(S);

that is, at least a fraction of A’ of the edges leaving the set S (double-counting

edges with both endpoints in S) enter into R. We want to show that at least

one of the sets N,(S) both is large and has nearly a fraction A’ of its vertices in

R. To do so, we apply Lemma 10 where we have one “box” for each set N,(S).

We place a ball in box i for each endpoint in N,(S) of an edge from S to

N,(S). A ball is red if the endpoint to which it corresponds is in R. The number

of balls in box i is D~ ~~)(S) of which D ~(~)~ .(S) are red, and the number of
balls total in the log,, ~n boxes is D(S) o~ which DR(S) are red. By Lemma 10,

New Approximation Algorithms for Graph Coloring 487

taking ● = 8, for some iO (O < iO < logl+on),

(1)

(2)

(lo)

(11)

By definition of N,[JS), each vertex in N,,~S) is incident to at least (1 + 8)’”

and less than (1 + 8)’”+ 1 edges from S. Thus,

which implies that:

l~(fS) n RI DNt,,(~)nR(s)/DNt,,(~)(s)

IM,(S)I 2 (1 + 8)

(1 - 6)A’

2 (1+8)

> (1 – 28) A’. (12)

Equations (10) and (12) show that the index i. satisfies both claims of the

theorem. ❑

4.4. APPLYING THE VERTEX-COVER APPROXIMATION. Given a graph ~ on

N vertices, M edges, and with a minimum vertex cover of size Nvc, the

BE/ MS vertex-cover algorithm [Bar-Yehuda and Even, 1984; Monien and

Speckenmeyer, 1985] finds a vertex cover of size at most

(

log log N
2–

}
N

2 log N ‘c

in time O(NM).

If ~ has an independent set with at least

:(l-AN
vertices, it must have a vertex cover of at most

al++dN
vertices. So, the algorithm will find a vertex cover W c ~(~) of size at most.

:(1++(2”‘:::)N
[

log log N 1 log log N
=1–

4 log N
I

N
log N – 4(log N)’

<[l-Q(lO:NI;
— N.

488 AVRIM BLUM

Since W is a vertex cover, V(H) – W is an independent set of size at least

0(N\log N). So, we have the following lemma.

LEMMA 11. Gilen a graph H on N vertices with an independent set of size at

least

:(1-+ IN>
the BE/ MS algorithm can be used to find in polynomial tinle an independent set

of size Q(N\log N).

WJe now prove the Main Theorem.

PROOF OF THEOREM 5. Step (1) of algorithm First-Approx ensures that no

vertex has degree less than f(n) for f(n) = n2\5 logs/5n. Step (2) ensures that

no two vertices share more than n /f(n)2 neighbors. Applying these values to

Corollary 9 of the previous section yields the result that of the O(n log+n)

subsets generated in Step (3) of Algorithm First-Approx, at least one set

, , has Q(f (rr)4/(n log7n)) vertices of which at least a fractionT= T,JIJ

() 1
;l– —

log n

are colored red under some legal 3-coloring of G. By Lemma 11, since

(1 - l/logn) 2 (1 - l/log ITD.
Step (4) of algorithm First-Approx will find an independent set in T of size

W f(n)4/(n logxn)). We can thus make progress of Type 1 [Large-IS] on some

T,,,,, ~ in Step (4) of Algorithm First-Approx so long as:

f(n)” = ~ n

(n log8n) (–if(n) “

Equivalently, we make progress towards an O(f(n))-coloring so long as f(n)5

= Q(n2 log8n), or f(n) = fl(n2/510gX/5rz). Thus, we have proved the Main

Theorem. ❑

5. Coloring 3- Colorable Graphs: InzproLed Algorithm

In this section, we present a procedure that improves on the bounds achieved

by Algorithm First-Approx given in Section 4. The essence of the new algo-
rithm is an improved method for forcing expansion (see Section 4.1) and

making progress from regions of high density in a 3-colorable graph. This

improves performance and results in coloring n-vertex 3-colorable graphs with

only 0(n3/s) colors.

5.1. A USEFUL LEMMA. We now present a lemma that is a strengthening of

Corollary 4, and allows us to force a 3-colorable graph G to behave in a certain

“nice” way. In particular, for any vertex LI of G, for any subset S we select of

N(L) of size at least (n log2rz)/f~n)Z, the lemma allows us without loss of

generality to force S to contain 0(IS 1) vertices of each of the two available
colors (that is, the colors that ~) does not have), or else make progress towards

New Approximation Algorithms for Graph Coloring 489

an f(rz)-coloring of G. This will be useful for forcing sets to expand “roughly

evenly” into vertices of the available colors in the graph. This lemma requires

the graph to be 3-colorable.

Let f(n) be some “nearly-polynomial” function as in Definition 1.

LEMMA 12. GiL’en a set S c V(G) of size O((n log2 rz)/f (n)2), we can either

make progress towards an 0(f (n)) -coloring of G or else guarantee that Llnder el’ery

legal 3-coloring of G, set S contains less than

(l-+)’s’
l~ertices of any giuen color class.

The idea of the proof is that if’ S consists of vertices nearly all of one color,

say red, then its neighborhood should contain mostly blue and green vertices

and have few red vertices. If this occurs, then N(S) will have a large indepen-

dent set of size max{lN(S) n greenl, IN(S) n bluel}. One can thus make

progress on N(S) using the BE/MS Vertex-Cover algorithm. The difficulty

with this approach is that the neighborhood N(S) need not have few red
vertices. It could be, for example, that the red vertices in S tend to have a

smaller degree than the others. Or, even if all vertices have the same degree, it

could be that edges from the blue and green vertices of S all enter into

different vertices in N(S), but edges from red vertices in S tend to hit many

vertices multiple times. To handle these difficulties, we run a procedure

separating vertices and neighborhoods into bins depending on degree, in a

similar manner to that done in the proofs of Theorems 7 and 8.

PROOF OF LEMMA 12. For convenience, let red be the color with the most

vertices in S. The first goal is to find a large independent set S’ G S. We can

do this in a greedy fashion by deleting arbitrary edges from S. That is, begin

with S’ = S, and while S’ is not an independent set, pick an arbitrary edge

(a, b) between two vertices of S’ and delete both endpoints from S’ (let
S’ + S’ – {a, b}). If we ever have deleted more than lSl\(4 log n) pairs, this

means we must have removed over IS l\(4 log n) vertices not in red from S (an

edge can have at most one endpoint in red). So, we can guarantee that no color

comprises more than

(1-+)
of the vertices of S and halt. Otherwise (we do not delete more than

lSl\(4 log n) edges from S), we will end with S’ an independent set of size at

least

(1++
which is Q((n log2 n)/f(n)z).

Since S’ is independent and has size Q((H logz H)/~(rZ)Z), we can make

progress Type 2 [Small-Nbhd] towards an 0(f(n))-coloring of G if IN(S’)I s

(n log2 n)/f(n), in which case we halt with “progress made”. Otherwise, let
T = N(S’), so ITI 2 (rz log2 n)/f(n).

490 AVRIM BLUM

The basic idea of the procedure now is the following: We first “throw out”

edges so that the vertices in S’ have disjoint neighborhoods in T. If at this

point all vertices in S’ had the same degree, we would be done: If set S’

consisted almost entirely of red vertices, then set T would consist almost

entirely of blue and green vertices. Since the vertices of S’ may have differing

degrees, we partition S’ into bins based on degree in a similar fashion as done

with the sets 1, defined in Section 3.3. For each bin, either it contains a good

fraction of non-red vertices, or else its neighborhood is mostly blue and green.

Thus, if a bin has many neighbors in T, we can either make progress using the

BE/ MS algorithm on the neighborhood or else have a guaranteed number of

non-red vertices in S’ (recall, our final goal is to guarantee that S has at least

\s]\(410gi’z)

non-red vertices.) Formally, we perform the following steps:

(1) For each vertex w in T, arbitrarily mark one of the edges from w into S’.
Let E’ be the set of marked edges. Now, for each LI c Y, define its marked

neighborhood N’(u) by:

N’(L) = {w = TI(L’, w) =E’}.

For any set A ~ S’, define the marked neighborhood of A similarly to be:

N’(A) = U N’(,).
L,CA

Note that by definition of E’, if A and B are disjoint subsets of S’, then

their marked neighborhoods are disjoint as well, because each w = T is in

the marked neighborhood of only one vertex of S’. (See Figure 1.)

(2) Partition S’ into subsets such that in each subset, if we consider only the

edges in E’, the minimum degree is at least half of the maximum degree.

In particular, we partition ~’ into sets so, ..., ~m for m < log n such that:

s, = {u Gs’:lN’(u)l G [2’,2’+1 – l]}.

(we my ignore vertices in S’ with no marked neighbors.)

Obsen)ation. Notice that if more than a fraction

(1’*]

of the vertices of some S, are red, then at most 1/(log n) of the vertices in
N’(S,) can be red, since the non-red vertices in ~, can have at most twice as

large a marked neighborhood in T as the red vertices do (and, as noted in Step

(1), marked neighborhoods of disjoint subsets of S’ are disjoint).

(3) NOW, pick iO such that IN’(S,(,)I is maximized; so

since there are at

disjoint. Note that

(1 IT’1~’(~1(1)12 1 + log,,

most (1 + log n) sets S1 and their neighborhoods are

iO is not necessarily the largest index, since lower index

New Approximation Algorithms for Graph Coloring 491

blue and green
red

E’ ~

T

blue and green

FIG. 1. Vertices in ,S have disjoint marked neighborhoods. If the vertices had nearly identical

“marked degree,” then a mostly red set S’ would imply a mostly blue and green set T.

(4)

(5)

sets might have enough vertices to compensate for having fewer neighbors

per vertex.

We now apply the BE/MS vertex-cover algorithm (or equivalently, algo-

rithm Approx-IS in the appendix) to the set N’(S,,,). If it finds an indepen-

dent set of size fl(n/f(n)), then we have made progress Type 1 [Large-IS]

and can halt with “progress made”. The reason we apply the BE / MS
vertex cover algorithm is that if more than a fraction

(’-*)
of the vertices of S,,, are red, then by the observation in Step (2), N’(SLo)

has at most a I/log n fraction of its vertices red, so N’(SL,,) has an
independent set of at least

()

1
;l– —

log n

of its vertices, namely either N’(S,,,) n blue or N’(S,O) n green, whichever

is larger. Thus, by Lemma 11, we find an independent set of size
Q(/N’(S,O)l/log n) = Q(n/f(n)) since we have assumed IT I >

(n logz7Z)/f(n) and

IN’(S,(,)I> 1
l+logn

ITI.

So, if we do not make progress, we know it k not true that more than

(1 – l\(210g n))

of the vertices of S,O are red.
If we did make progress in Step (4), we know that at least 1/(2 log n) of the

vertices in S,, are blue or green. Now, let S’ - S’ – St, and let T = N(Y).

If S‘ has not been reduced to less than 1/3 its original size, then go back

to step (l). Notice that in this case, we may still assume that IT] >

492 AVRIM BLUM

(n log2?Z)\~(n) since S’ still has size Q((n log2n)\~(rz2). If S’ is less than

l\3 its original size, then go on to Step (6).

(6) If we reach this step, it means we have reduced S’ to less than a third of its

original size, and have done so by removing from S’ sets containing at least

a 1/(2 log n) fraction of blue and green vertices. Since S’ originally had

size at least

(1-=)’s’7
this implies we must have removed more than:

blue and green vertices S. So, we may halt with the guarantee asked for in

the statement of the lemma since set S could not possibly have contained

more than

[’-++
red vertices. •I

5.2. MAKING PROGRESS FROM DENSE REGIONS. We now use Lemma 12 to

help take advantage of certain types of dense regions in 3-colorable graphs. In

particular, we consider the case of two sets of vertices S and T where S is

2-colored under some legal 3-coloring of G and the number of edges between

S and T is large compared with sizes of the two sets. This occurs when S is a

subset of the neighborhood of a vertex (e.g., a set N(~l) n 1,) and T is some set

N,(S) for a large-i (see Section 3.3). -
J

THEOREM 13. GiLwn sets of Lertices S and T in an n-lertex

G, such that

(1) S is 2-colored under some legal 3-coloring of G,

3-colorable graph

([HlsllT12(nlog n) + lTlls12n~

(3) [D~(S)13 = Q ISI+ rn:~d~(L) X
f(n)’ 1)f(n)’ ‘

then we can make progress towards an 0(f (n))-coloring of G.

Before proving this theorem, let us first make sense of the condition on

[ll~(S)]3 by considering a few examples. Suppose we wish to color with

f(n) = n3/’8 colors, the set S has size ns’g, and each vertex u in S has degree

n3\R into T. Then,

ll~(S)/lS[= n3i8,

New Approximation Algorithms for Graph Coloring 493

which is greater than n 1/4 log2n (condition 2). The main condition (condition

3) reduces to:

~ll~/s > ~nsf~[lTlzns/s logn + lTl~llO/s] .

Ignoring logarithmic factors, the theorem assures us we make progress if

IT I = 0(n5/g). This is the basic idea for the 0(n3\810g3\5n)-co!oring algorithm

described later. For that application of this theorem, if T has fl(n5/8) vertices,

we will be able to find a large independent set inside T, and thus make

progress of Type 1.

As another example, if we wished to color with n035 colors, S had size no 35

and each vertex in S had degree no 35 into T, then the main condition reduces

to

[1n,21> cn035T12n065log n + lTlnl s].

In this case, we only make progress if IT I = d(n045) (here the lT\nl 3-term is

dominant). However, we do not know how to make use of forcing IT I = fl(n” ‘5).

PROOF OF THEOREM 13. For convenience, let blue and green be the two

colors that appear in S, and let us define the following notation.

— Let 11,0,~1= D~(S) = D~(T).

— Let d,v~ = ~to,,l/lSl be the average degree into T of vertices in S.

We want to keep track of those vertices of T that have a reasonably large

degree into S, so we define a subset T’ of T by:

(1 Dtota,
T’ = W = Tld$(w) > –—

}2 ITI “

Since

[11 DtO,~l
D~(T– T’) < ITI –—

2 ITI ‘

we have D~(T’) > ~DtOtJ1, or equivalently,

D total
D~, (S) > —

2“

We also want to look at those vertices in S that

into T’, so define:

(13)

have reasonably large degree

(1 D~,(S)

}“ = “ c “dT’(u) 2 z 1s/

Since

[11 D~,(S)
D,,(S – S’) < ISI –

2 1s1 ‘

we have: ll~,(S’) > ~DT,(S), which by Eq. 13 implies:

D total
D~r(S’) > —

4“
(14)

494

Also, by definition of S’ and Eq. (13), if L G S’, then

or equivalently,

d~(L’) > ;d Jvg for all l) ES’.

AVRIM BLUM

(15)

Since we are given (condition 2) that

()n logz n
d avg‘a

f(n)’ ‘

this implies that all t) E S’ have

Thus, by Lemma 12 (applied to the sets Al LJ) n T), we can guarantee that

each vertex L G S’ has at least a fraction 1/(4 log n) of its edges into T

entering into non-red vertices.

So, for some non-red color, say green without loss of generality, at least

D~(S’)/(8 log n) edges from S’ enter into green vertices of T. This implies

that some green vertex g G T has degree at least Dr(S’)/81Tllog n) into S’.
Now, define (see Figure 2):

X= N(g) n S’.

Y= N(X) n T’.

So, we have:

1 D~(S’)
1X1 > –

8 (lTllog n)

1 D,O,~l
>—

32 (lTllog n)

(16)

Note that set X consists entirely of blue vertices, and since Y is in the

neighborhood of a blue set, Y contains only red and green vertices. We want
to show that Y k large, because we will later intersect Y with a red and blue

set to get a large monochromatic (red) set, which will allow us to make

progress. We show that Y must be large, as follows:

New Approximation Algorithms for Graph Coloring

green red blue

495

blue green

FIG. 2. Vertex g and the sets X and Y. Also, green vertex g’ E ,S (defined later) and the
intersecting neighborhoods.

By Theorem 3, we may assume that no two vertices of X share more than

n/f(n)2 neighbors in T’. Now suppose that

,x, < f(n)’ 1

(1
— -#avg .

n

In this case, each vertex L) G X can share at most lXl(n/f(rz)2) < ~d,v~

neighbors with other vertices in X. This implies, by Eq. (15), that u must have

at least @~v~ neighbors in T’ not shared with any other vertices of X. So, set Y
must have size at least Q(l Xld,v~).

If

,x, > f(n)’ 1

(1
— ~d

n
avg ,

then if we only consider the first

f(n)’ 1

()
— ~davg

n

of the vertices of X, we still get that

So, whichever case occurs, we have:

HIYI = Q min [Xldav,,
f(n)’

})

—(d,vg)’ .
n

(17)

496 AVRIM BLUM

By definition, Y is a subset of T’ and vertices of T’ all have a high degree into

S. So, we can lower bound the degree of Y into S by:

1 1s/
— —davglll

ii ITI

[{

1s1 f(n)’ ~ 1s1

= Q ‘in ‘x’m(d’”’)” n ‘da”) m)1

(by Eq. 17)

[{[11s1 2(da”’)’ f(n)’ ~1s1
=f2min ———

ITI logn ‘ n
))

‘da”) m “
(by Eq. 16) (18)

Now we

(dividing

apply condition 3 in the statement of the theorem. The condition

both sides by 1S13) states that

[
(L&)’ = 1s1+ rn:yw’)]

F

IT12 n ITI nz
—log12+— —

“Q]S12 f(n)’)
ISI f(n)~ “

So, this implies both that:

(19)

and

Thus, combining both Eqs. (19) and (20) with Eq. (18), we get:

(21)

It now must be that one of the following two cases occurs. The first case is

that there is some green vertex g’ ● S in the neighborhood of more than

~D$(Y)/lSl vertices of Y. In this case, according to Eq. (21), it must be that

D{glJY) = fl(n/f(n)2). So, IV(g’) n Y is a set of i2(n/f(lz)2) vertices, all of

which are red since N(g’) c blue u red and Y c red u green; see Figure 2.

Thus, we can make progress on this monochromatic set using Corollary 4.

The other possibility is that no green vertex in S is in the neighborhood of

more than ~D~(Y)/1 S I vertices of Y. In this case, the set of all vertices in S hit

by more than ~D~(Y)\lSl edges from Y is all blue. Define Z to be that set;

New Approximation Algorithms for Graph Coloring 497

that is:

Clearly,

at most

the size

((1/2) D,(Y)
z = t e Sldy(u) >

}1s/ -

the number of edges between vertices of Y and vertices in (S – Z) is

lSl(~D~(Y)/lSl) = ~~~(Y). So, ~z(Y) > ~ll~(Y). Thus, we can bound
of Z by:

(1/2) D.$(Y)
121>

rn:f C&(u)

(l\2)D~(Y)
>

max dT(L1) ‘
1,=s

which by Eq. (21) implies:

()lzj=fd -
f(n)2 “

Since Z is monochronomatic (blue) we can again use Corolla~ 4 to make

progress. So, whichever of the two cases occurs, we have made progress

towards an O(f(n))-coloring.

The final algorithm for making progress given our sets S and T is as follows:

Algorithm Dense-Region-Progress:

Given: Sets S and T satisfying the conditions of Theorem 13 in some graph G.
Output: Progress towards an 0(~(n))-coloring of G.

(1)

(2)

(3)

Run the algorithm of Lemma 12 on N(c) n T for all L) c S. If any runs make progress
towards an O(~(n))-coloring, then halt. Otherwise, we know there are many edges from

S into red, blue, and green vertices of T under any legal 3-coloring of G.
If for some pair of vertices u, L) G S, we have \N(u) n N(LJ)I 2 n/f(n)2, then use

Theorem 3 to make progress.

Otherwise. for each vertex LJ = T.

(a) Let Y = AJ(N(~I) n S) n T arid let Z = {w G S: dY(w) z n/~(n)2}.

(Note that we do not actually need to use the sets S’ and T’; they were just
convenient for the analysis.)

(b) Run the algorithm of Corollary 4 on Z.
(c) For each w = Z, run the algorithm of Corollary 4 on Y n N(w).

The above proof guarantees that this algorithm makes progress. ❑

5.3. THE COLORING ALGORITHM. We now combine algorithms First-Approx
a-rid Dense-Region-Progress to get an improved algorithm guaranteed to

0(n3\8)-color any n-vertex 3-colorable graph.

Algorithm lmproved-Approx:

Given: G = (V, E), a 3-colorable graph on n vertices. Let jlrz) = n3/8(log n)slz.
Outpufi Progress towards an O(~(n))-coloring of G.

(1)
(2)

For each vertex u, if d(LJ) < f(n), make progress Type 2 [Small-Nbhd].

Otherwise, for each vertex v, for each i, j ~ {0, 1,..., 5(bg n)2}:

(a) Let S = IV(ZI) n ZJ.
(b) Let T = Aj(S).

(c) If ITI > n5i8/(log n)3/2. run the BE/MS Vertex-Cover approximation algorithm.
If we find an independent set of size at least n/jl n), we have made progress Type 1
[Large-IS].

498 AVRIM BLUM

(d) If S and T satisfy the condition of Theorem 13, then make progress using Algorithm
Dense-Region-Progress.

THEOREM 14. Algorithm improved-Approx will make progress towards an

0(n3\S(log n)5/z)-coloring of any n-Lertex 3-colorable graph.

PROOF. Assume Algorithm Improved-Approx does not make progress in

Step (l). So, we know that the minimum degree d > f(n) = n3i8(log n)5iz. As

in Section 4, let R = red be the color class with LXred) = max(ll(red),
D(blue), ll(green)).

We now apply some of the facts proven in Section 4.3.2. Theorem 7

guarantees us that for some vertex c E R and some index j, the set S = N(~l)

n lj in Step (2)(a) has the property that:

8 Zf (n)
1s1 2 ~oa , and (22)

al+s~~

DR(S) 2 +(1 – 38) D(S), (23)

where 6 = 1/(5 log n). Note that for the given value of f, Eq. (22) and the

definition of 6 imply that:

\ (log n)”’-)

Theorem 8 (using A’ = +(1 – 38)) shows that

T = N,(S) of Step (2)(b) has the property that:

8D~(S)
D .nR(s) 2

log, +a 12‘

(24)

for some index i, the set

and (25)

lTn Rl 1,- --,

ITl
> ;(1 – 28)(1 – 38). (26)

Let us now, for the rest of the proof, fix two such sets S and T satisfying Eqs.

(22) through (26). We now show that these equations and the definitions of S
and T will ensure success of the algorithm.

Suppose first that IT I > n5/s/(log n)3\z. By Eq. (26) above, set T contains an

independent set (T n R) of at least a fraction +(1 – (l/log n)) of its vertices

(using 8 = 1/(5 log n)). So by Lemma 11, the BE/MS vertex-cover algorithm
finds an independent set of size Q(?15\s/(log n)5\z) = Q(n/f(rz)) so we make

progress Type 1 [Large-IS] in Step (2)(c).

On the other hand, if ITI < n51s/(log n)31z, then we just need to show that S
and T satisfy the conditions of Theorem 13. Clearly, S is 2-colored under any

legal 3-coloring of G since S ~ N(L), so Condition 1 is satisfied. For f(n) =

n3/8(log ~z)~/z, Condition 2 reduces to Dr(S)/lSl = fl(nl/~/(log n)3), which is
found to be easily met using Eqs. (23) and (25) as follows:

(27)

HdlSl
=0

Oog n)’ “
(28)

499New Approximation Algorithms for Graph Coloring

so,

DT(S) > ~

[)

,13/g

1s1 -
(29)

(log n)l’2

(30)

The last task is to show that Condition 3 is satisfied, which for the given

value of f, reduces to the requirement that

([[D,(s)]’ = Q 1s1+ m:; 4(U)]

[

,ll/J

- ISI ITI’

nl/~

+ ITI Islz

1)

(31)
(log n)’ (log n)”) “

To show that this requirement holds, we

and max ,)~ J dT(L’).
From Eq. (29), we have

upper bound the quantities IS 1,IT I,

(D~(S)

i
1S/ = O (log n)”2 ~ .

Next, our very condition for this case was that:

()
n5/~

ITI = O
(log n)3’2 “

Finally, since S c ~ so all vertices of S have nearly

not necessarily the same degree into T), we can

follows:

()D(S)
maxd~(v) = O —
LES Isl

[

D~(S)(log n)3
=0

1s1)

(D~(S)(log n) ’(log n)3’z
=0

~3/8

1

[

D~(S)(log n)y’z
=0

,13/8
)

(32)

(33)

the same degree (though

bound max ,,e LYd7(~I) as

(using Eq. (27))

(using Eq. (24))

(34)

500 AVRIM BLUM

The three Eqs. (32), (33), and (34) allow us to reduce requirement (31) to the

condition that:

[1 D~(S)
[D,(S)]’ = Q (10g n)”” ~ 1

[

~y/~
. D~(S)

(log n)’3’2

~13/~

+ DT(S)2
(log n)’’” 1

DT(S) ~
i ..3/4

(=[%(s)]’ “Q “ ‘ +
(log n)’ (log n)c ~

Equivalently, we just have the requirement that

(

~3/4 Dr(S)
DT(S) = 0

(log ‘2)2 +)(log ‘2)’ “

Clearly,

()

D~(S)
D~(S) = O

(log n)’

so we simply need

H
,13/J

D~(S) = Q
(log /2)2 “

We are now done, because combining Eqs. (29) and (24) yields:

Thus, Step (2)(d) of Algorithm

\ (log n)”- j

H
n3/4

=0

(log n)’ “

lmproved-Approx makes progress.

(35)

❑

6. Coloring k-colorable graphs

We now consider two different methods for using the preceding techniques

developed for 3-colorable graphs to improve the bounds for approximately
coloring k-colorable graphs for fixed k > 3. One method is simply to use the

preceding algorithms as an improved base case for a recursive strategy used by

Wigderson [1993]. A second method is to directly extend the above algorithms

for k >3. For the latter approach, one needs both an analog of the shared

neighborhood condition (Theorem 3), and a way to cascade together several

applications of the distance-2 neighbor-taking process (Step 3 of Algorithm

First-Approx) so that we can “pump up” the relative size of the largest

independent set. We will see that the second method yields better asymptotic

bounds than the first, though with diminishing returns as k increases. How-

ever, the running time of the second method grows as (n logz n)z~ + ‘(1) while

New Approximation Algorithms for Graph Coloring 501

TABLE I. SUMMARYOFRESULTSIN “6” NOTATION FOR THE NUMBER OF COLORS USED

TO COLOR k-CHRoMATIc GRAPHS FOR VARIOUS COMBINATIONS OF Algorithms

k=3 4 5 6 7 general

Wigderson [1983] ~11~ ,, ?/3 ~3/4 ~ldls ,,5/6 ~1–1/k–l
,to 5 /10667 ~n 75 ~1()8 ~o 833

base: k = 3 ~3/8 ,18/1~ ~13/18 ~lu/?3 ~23/28 ~1–1/h–7/5

no 375 ,,0615 ,10722 ~tO 783 no 821

base: k = 4 ,z3/5 ~5/7 ,17/9 ,t9/1 I ,tl–l/’k- 3/2

,Zo 6 no 714 ,10778 ,10818

best we have
A ~ ~

,13/8 ,,3/5 ~~131 n 177 ~~ <?.81

n
() 375 ,106 ~0 6Y5 ,10766 ,,0 8(16

NOTE: Items “base: k = 3“ and “base: k = 4“ correspond to using Algorithm Recurswe-Color

with Algorithm Multi-Stage-Color as a base case for k = 3 or 4, respectively.

the running time of the first is dominated just by the time taken by the

base-case algorithm. The two methods can be combined, providing a time/per-

formance trade-off, by choosing some kO and using the second method as a

base case for the first method for k > k{). This will result in an algorithm with

running time O((n logz n)z~”+c) for some constant c.

The results of these approaches are summarized (in “O” notation) in Table

I. The first row shows the bound for using Wigderson’s algorithm with base

case k = 2. The second and third rows show how the bounds are improved

when we use the new coloring method as base cases for k = 3 and k = 4,

respectively. The last row shows the best bounds we can get using the direct

extension. The direct-extension algorithm uses random bits, so the bounds in

the last two rows are with high probability over the coin tosses of the

algorithm. See Corollaries 16 and 21 for more precise bounds.

6.1. A SIMPLE RECURSIVE APPROACH. A standard method [Berger and

Rompel, 1988; Halldorsson, 1993; Wigderson, 1983] to approximately color

k-colorable graphs is to pick a vertex of high degree and recursively try to color

its (k – 1)-colorable set of neighbors with as few colors as possible. When we

get to a 2-colorable set, we can just directly 2-color that set in the standard

way. For example, Wigderson’s algorithm for coloring k-colorable graphs with
~nl-l/(&l) colors can be described as follows:

Wlgderson’s Algorithm for k-colorable graphs:

Given: A k-colorable graph G on n vertices.

Output: A coloring with at most ktz] -f’1(~ - 1)) colors.

(1) If there exists a vetex z with at least }zl -” /(k- l‘) neighbors, then color the neighbor-
hood recursively with

(~ – 1)(7* 1-(1/(k-1)))’-(l/(~-2)) = (~ _ ~)(n(k-2),(A_,))(L-3)/(L-2)

= (~ – l) TI(L-3V(L-1)

colors. Then remove those nodes from the gra h and the colors from the palette.
PNote that this step can be executed at most n ‘(k 1) times, resulting m a total of

(~ – 1)11(~-3)/(~-1)+(1/(~-1)) = (k – l);ll-[l/(~-l))

colors used in this step.

502 AVRIM BLUM

(’2) Otherwise, greedily color thegraph left with n-(’\(k-’))colors.So,th etotalnumberof
colors used in both steps together is

~nl-(l/(L- l))

(Note that for the base case of h = 2. we have 2 = 2n1 ‘(’l(Q- ‘)).)

The algorithms presented in the previous sections allow one to stop at k = 3

as a base case instead of k = 2 in this type of procedure and thus use fewer

colors. More generally, we can describe when a bound achieved for coloring

graphs of chromatic number kO will improve the performance of this kind of

recursive procedure for graphs of higher chromatic number. In particular,

syppose we have an algorithm .& to color any n-vertex kO-colorable graph with

O(rz”) colors. Then, the important quantity for this approach, which we call the

recursiz’e pe~o~mance r (w’) of the algorithm, is:

1
r(ti) = k. – —

l–a”
(36)

If an algorithm has a higher value of r, then the bounds achieved by using that

as a base case for k > kO will be improved. Specifically, the recursive algorithm

will color k-colorable graphs for k > kO with O(rZ 1– f] jc~ –‘ t ‘)))) colors. So, for

example, using the fact that we c~n 2-color 2-colorable graphs (k. = 2, a = O),

we find r = 1 and the bound is O(n 1- (’ i(k-1 ‘)). Using the improved bounds for

coloring 3-colorable graphs in Section 5 (k. = 3, a = 3/8), we get r = 3

– & = 7/5, so the improved bound for k >3 is:

Q(nl-l/(k- 7/5)) (37)

c@ors. Later, in Section 6.2, we will see how to color 4-colorable graphs with

0(n3/5) colors, so we get r = 4 – & = 3/2. Thus, for k >4, we can color

with

~(lzl-1/(L-3/2))

colors.

The following theorem more precisely describes the bounds achieved by the

recursive approach.

THEOREM 15. Giuerz an algorithm w’ to color czny m-Lertex ku-colorable graph

with cm” log flm colors, then algorithm Recurs ive-Color(&’) below can color any

n-vertex k-colorable graph (k > kcj) with at most:

C~(n) = [c + (k – ko)]~ll -(ti(k-’))(logn)~[(k’’-’)’(k-’)] (38)

color, }dzere r = r(w) = k. – 1/(1 – ~).

Using Theorem 15 and the bounds achieved by algorithm lmproved-Approx,

(kO = 3, a = 3/8, p = 5/2), we can restate formula (37) more precisely in the
following corollazy.

COROLLARY 16. Algoridznz Recursive-Color(lmproved-Approx) colors any
rz-L)ertex k-colorable graph (k > 3) with at most

O(lZ1 - l/(k-7/5)(log n)4/fk-7/5J)

colors.

The recursive algorithm to achieve these bounds is described below,

New Approximation Algorithms for Graph Coloring 503

Algorithm Recursive-Color: (Variant on Wigderson’s algorithm)

Given: An n-vertex k-colorable graph G and an algorithm Q’ to color any m-vertex

ko-colorable graph with at most Ck (m) = cm” log 6 m colors (k. < k).
Outpufi A C~(rz)-coloring of G, !or CJn) as defined in Eq. (38).

(1) Let r=k,l –(1 (1 – a))
((2) Let ~(n, k) = n ‘(l/(k-r))(log n) P(k’’-’)/r)-r).

(3) While there exists a vertex with at least ~(rz, k) neighbors, select fin, k) of its neighbors
and color them with CL_ ,(~(rz, k)) colors. Remove those nodes from the graph and the
colors from the palette. Note that we can execute this step at most n/fin, k) times.

(4) Otherwise, greedily color the graph with ~(n, k) colors.

PROOF OF THEOREM 15. Let ti be an algorithm that colors any n-z-vertex

/co-colorable graph with crrz” log ‘m colors and let r = r(.ti). We use C~(rz) to

denote the coloring bound achieved on n-vertex k-colorable graphs. First,

formula (38) in the statement of the theorem holds for the base case of k = kO

since for k = k., we have:

Ck,(rz) = crz-lt~’t(l-~))(log }2)D

—– cn a log ‘n.

Let Ck = c + (/c –)cO) and let

f(n, k) = n(k-r-’)i(k-r)(log n)~(~’’-’)’r)-r)

as in Algorithm Recursive-Color. So, assuming the bounds of Theorem 15

inductively for k’ < k, we need to show that Ck(n) < CLf(n, k).

Since we can loop in Step (3) of Algorithm Recursive-Color at most rz\f(n, k)

times, this results in the recurrence:

[1
n

C~(n) 5 C~_l(f(n, k))
f(n, k)

+f(n, k).

So, substituting in the bounds of Theorem 15 inductively, we have:
r

[
Ck(n) < C~_l[f(n,k)]’-(’/(r-l)~)~

L,l–r

–1[1
n

x[logf(n, k)]~(~-, -l)
f(n, k)

+ f(n, k)

< c~-l[f(n,k)]i-fll(~-’-l))

k,l–r

–[—1
n

x[logn]~(k-r-l)
f(n, k)

+f(rz, k)

= c~_ln[f(n,k)]-(l/(~-~-l))

kc, –v

x[logn]p(~) +f(n, k)

k–,–l –l/k–r–l

()
= ck_ln n k–~

(
k,l–r –l/k–r–l

–)

kc, –r

x [log n]~(k-r) [log nlp(~-,-l) +~(n, k)

= ck_lnl-l/k-r[log n]~(ko-’jk-’) + f(n, k)

= ck_lf(rz, k) +f(n, k)

= ckf(n, k).

504 AVRIM BLUM

6.2 DIRECTLY EXTENDING THE k = 3 ALGORITHM

6.2.1. IntLlition. In this section, we describe how the methods of Algorithm

First-Approx of Section 4 can be applied directly to graphs of higher chromatic

number, yielding improved coloring bounds for such graphs. Unfortunately, we

do not know a way to extend the approach of Algorithm lmproved-Approx in a

similar way, though it can still provide a useful “base case”.

The main idea of Algorithm First-Approx was to look at large subsets of the

distance-2 neighbors of vertices in a 3-colorable graph: in particular, the sets

NZ(N(U) n 1,) for each vertex L’ and each pair of indices i, j. The “well-distrib-

uted” property proved in Theorems 7 and 8 ensures that one such set will be

nearly half red under some legal 3-coloring of the graph, and the expansion

property of Theorem 3 ensures the set is large as well.

Although the expansion property depended heavily on the graph being

3-colorable, the theorems forcing good distribution require only that the given

graph have an independent set of large total degree (see Section 4.3.2). In

particular, they simply require that there exist a large independent set R such

that D~(~ – R) > AD(V – R) for some constant A and that the graph have

sufficiently large minimum degree. So, we could conceivably make progress on

graphs of a higher chromatic number than 3 by cascading several applications

of the distance-2 neighbor-taking stage in the following way.

Suppose, say, G is a 5-colorable graph and we wish to color G with ~(n)

colors. Then, we know there exists an independent set R such that D~(P’ – R)
> ~D(V – R) ancl we can establish a minimum degree of ~(n). If we could

guarantee that no two vertices shared too many neighbors, we could look at the

sets T, , , and be assured that one will be large and have an independent set
R’=R’~T such that IR’ I = ~lT,, ,,, I using Theorems 7 and 8. Let us now

focus on th~ ~~bgraph G’ induced T,,, ~, and let V’ = T, , ,. Suppose we could

in addition somehow ensure that within G’, the vertices’ of R’ had about the

same average degree as the other vertices of V’. Then, we would have

D(R’) = ~D(V’), which would imply that:

D~(V’ –R’) = ~D(V’ – R’), (39)

since D~,(V’ – R’) = D(R’) and D(R’) = ~D(V’) = :(D(V’ – R’) + D(R’)),
where we are now counting degrees only within G’.

Now, if we re-establish a minimum degree without destroying (39) above, we

could then reapply the distance-2 neighbor-taking process within G to get a

set V“ containing an independent set R’ such that IR I = ~1V“ 1. If again we

could ensure that D(R”) = ~D(V”) within the new graph G“, we would get:

D~/(V” – R“) = ~D(V” – R“).

Thus, one final application of examining the sets T,,,,, with G“ will yield some

set on which the BE / MS vertex-cover algorithm makes progress.

So, the two main ingredients needed to make this procedure go through are

(1) how to ensure that no two vertices share too many neighbors in common,
and (2) how to get from IR’ I = A/V’ I to D(R’) = AD(V’). These problems are

solved in the following sections.

6.2.2. The Bootstrapping Algorithm. We now describe procedures that al-

low us to “bootstrap” applications of Algorithm First-Approx to graphs of

New Approximation Algorithms for Graph Coloring 505

higher chromatic number. The resulting algorithm Multi-Stage-Color will color

any n-vertex -colorable graph with:

f~(n) = O(?la(k)log ‘(/’)n)

colors, where a(k) will be defined inductively in k, and ~(k) is a nondecreas-

ing function such that ~(k) s 5.5. The exponent ~ of the logarithm in fact

approaches 5.5 as k - CO.Because a is the critical value and the log factors

are low-order terms, for purposes of simpler analysis we will attempt to get

tight bounds and assume ~ is fixed at 5.5 for all k >3.

For base cases, a(2) = O and a(3) = 3/8 using algorithm lmproved-Approx.
The recursive formula for a(k) for k >3 is:

1 1
=2–—

1 – a(k)
2&~ +

l-~:k-z)i’-++ ’40)

We examine this formula in more detail later, but we just note here that a is

nondecreasing in k.

We need in this section to redefine the value 8 to depend on the chromatic

number k of the graph G we wish to color. In particular, we shall use:

1
8 = 8(k) =

4klog n “

The sets I, and N,(z’) used in Section 4 now depend on this new quantity.

As mentioned previously, the theorems of Section 4.3.2 forcing good distribu-

tion do not require that the graph be 3-colorable, only that there exist a large

independent set R such that DR(P’ – R) > AD(V – R) for some constant A

and that the graph have sufficiently large minimum degree. Let us, in fact,

repeat Corollary 9 here, removing all mention of the chromatic number of the

graph. (The fact that the graph was 3-colorable was used only in showing that

A > 1/2.)

COROLLARY 17 (VARIANT OF COROLLARY 9). Suppose G = (V, E) is an

n-oertex graph such that (1) no two Lertices share nlore thans neighbors, (2) G has

minimum degree ,dw,,,, _> (10 log n)/ 6 ~], and (3) G contains an independent set R

such that D~(V – R) > AD(V – R) for some constant A = [0, 1]. Then, for any
8 = l/(@(logn)), for some ~ E Vand some i, j E [0,..., logl+ ~n], the set

T
1,1, J

=~(N(u) nI,)

has size at least fl((dmj,)2/(s log7 n)) and the property that IT,,,, f’ RI2 Ml –
5t5)l~, *,,l.

We now present a new method to ensure that no two vertices share too many

neighbors.

THEOREM 18. Gil’en an n-[’ertex k-colorable graph G containing two uertices

that share at least

l–~(k)

~1–a(k–2)

neighbors and an algorithm .QZto color any nz-1’ertex (k – 2)-colorable graph with

fk. z(m) colors, Algorithm Sharing-Progress below will make progress towards
an f~(n)-coloting of G.

506 AVRIM BLUM

Algorithm Sharing-Progress:

Given: (l)An n-vertex k-colorable graph G containing twovertices that share at least

l–a(k)

n
1–CX(A-2)

neighbors, and (2) an algorithm & to color any rmvertex (k – 2)-colorable graph with

~k ,(nz) colors
Outputi Progress towards an ~L(n) coloring of G.

(1) Let ,S=lV(x) fIiV(y)wherex and yshare at least

(~)

l–a(k)

,ll–e(k–z

neighbors, and let G~ be the subgraph induced by set S.

Run algorithm M on G~. Note that if G~ is (k – 2)-colorable, then & will color G~ with
at most:

fk-2(t~l~ = ~(\sla(’-2)(]Ogl~ l)p(’-2))

< O(lsl’+z!log n)~[~)) colors,

(using 1S1< n and (3 nondecreasing). Thus, Algorithm d will find an independent set of
size at least:

(3)

(1=fi~
fk(n)

Thus, if G~ is (k – 2)-colorable, then we have made progress of Type 1 [Large-IS].
If we did not make progress in Step (2), it must be that G,J was not (k – 2)-colorable.
The only way this could be is if .x and y must be the same color under any legal

k-coloring of G. So, we can merge vertices z and y and make progress of Type 3

[Same-Color].

The argument given in Algorithm Sharing-Progress proves Theorem 18. ❑

We now use Algorithm Sharing-Progress in a procedure that allows us to

“bootstrap” applications of Step (3) of Algorithm First-Approx.

Algorithm Bootstrap:
Given: (1) Values

ae[o, l]>~>o and 8 = I/@(log n),

and (2) An m-vertex subgraph H(m >> 1/3 z) of an n-vertex graph G such that H contains
an independent set R with IRI > AIV(H)1 for some constant A > 0.

Outputi Either (1) progress towards an O(n U log 6 n)-coloring of G, or else (2) at most

nz/2 subgraphs Gc,, G,, ..., ,. ~-~ of H such that with high probability at least one G, has

both a minimum degree ~ (’82nz\n)na logp n and considering only edges within G,,
D(R n V(GJ) > (A – 28) D(V(G,)).

(1)Let C(, = (Vu, EO) = H. Inductively create graph G, = (~, El) from graph G,_, for
i= 1,2 t.. .) m/~ – 1 by selecting an edge at random in E,-, and deleting both
endpoints. So, 1~1 = l~_, – 21.

(2) For each G, with at least ~m vertices, while G, contains a vertex with degree less than
3 ‘mna-’ log ~n: delete from Gl the vertex of minimum degree and all incident edges.
Suppose we have removed more than 82nt vertices from any G,. ,%nce within the set ~
of vertices deleted from G,, the degree of each vertex can be at most 8 ‘nzn” –] log ~n,

we can greedily find an independent set inside ~ of size at least:

S 2m n

Szmrz-llogon = n“log~n

So, we make progress Type 1 [Large-IS] towards an O(n” log ‘n)-coloring of G.

New Approximation Algorithms for Graph Coloring 507

(3) If we did not make progress in Step (2), then output the graphs, G, for i = 0,1,..., m/2
– 1.

THEOREM 19 [ALGORITHM Bootstrap WORKS AS GUARANTEED]. Given an

m-uertex subgraph H (m >> 1/62, of n-vertex graph G such that H contains an

independent set R with IRI > Al V(H) I for some constant A Then, either (1)

Algorithm Bootstrap makes progress towards an O(n slog ‘n)-coloring of G in

Step (2), or else (2) with high probability, one of the subgraphs G, = (~, E,) has

both a minimum degree of 82mn a- hog ‘in and within the subgraph, D(R n ~)

> (A – 28) D(q).

PROOF. Let us consider the graphs G, created after Step (1) of Algorithm

Bootstrap, but before deleting vertices in Step (2). Let R, = ~ n R and let

N = m(l – 6)/2; note that set VN contains 8m vertices. We show now that

with high probability, for some index i < N, we have D(R,) > (A – 8)D(~).

The idea of the argument is that since we are removing vertices with a

probability proportional to their degree, if D(R,) < (A – 8)D(~) for all such

i, then we would remove many fewer vertices from R than from V – R. In fact,

with high probability we would remove so many fewer that once we reach

graph G~, the set RN would be larger than V~, a clear contradiction.

For each i < N, let A, be the event that in creating G,,, from G,, we delete

an edge with an endpoint in R,. Since the number of edges in E, with an

endpoint in R, is exactly D(Rl) (because R, is an independent set), we have:

D(R,)

‘r[A’] = IE,I

2D(R,)
—

D(q) “
(41)

Suppose for some index i s N we have D(R,) < (~ – 8) D(K). Then, the

probability event Al occurs is at most 2(A – 8).

Let p = 2(A – 8) and assume for contradiction that D(R,) < (~ – 6)D(V)

for every i s N. So, for each i s N, the probability that the ith edge removed

from G has an endpoint in R is less than p. Since we remove N edges to
create G~ and each time we remove an edge the probability it has an endpoint

in R is less than p, by Chernoff bounds [Angluin and Valiant, 1979] the

probability we remove more than pN(l + 8) vertices from R is at most

exp(– 8 ‘Q(pN)). Since pN = Q(m) and we assume m >> 1/82 in the state-

ment of the theorem, the probability we remove more than pN(1 + 8) vertices

from R is o(l). Thus, with high probability:

lR~l z Am –pN(l + 8)

[1rrz(l – 8)
=Am–2(A–8) z (1 + a)

=}IZIA– (A– a)(l – 82)]

=8rrz+m82(A -8)

> ~m (since A > 6).

SO, with high probability, lR~ I > IV~ 1, a contradiction. Thus, with high proba-

bility our assumption that D(R,) < (A – 8)D(~) for every i s N is incorrect;

that is, for some ~ of size at least dm, we have D(R1) > (A – 8) D(K).

508 AVRIM BLUM

Now, let i be such that 1~1 > tirn and D(Rl) ~ (A – t5)D(~) before Step

(2) of Algorithm Bootstrap. In Step (2), if at most 8 ‘m vertices are removed,
then we remove at most a fraction 8 of the vertices of ~ in order to establish

the desired minimum degree. Since we are always removing the vertex of least

degree, we remove at most 8D(~) from the total degree sum of the subgraph.

Even if, at worst, all the vertices removed were from the set R,, we still have in

the graph remaining that:

D(R,) > (A – 2t5)D(~),

as claimed. ❑

Given Theorem 19, we have an improved approximation algorithm for

coloring graphs of chromatic number k > 3, as follows: We first apply algo-

rithm Sharing-Progress; we than run the distance-2 neighbor-taking state of

Algorithm First-Approx k – 2 times, using Algorithm Bootstrap to “clean up”

the graph in between applications; and finally, we use the BE/MS vertex-cover

algorithm. The formal algorithm to color any k-colorable graph with

O(n a~~) log ‘(k ‘n) colors is given below. For simplicity, we have separated out

the distance-2-neighbor/bootstrap step into a separate procedure.

Algorithm Multi-Stage-Color:
Given: An n-vertex colorable graph G.

Output: Progress towards an O(n” log 6 n)-coloring of G for a = a(k) as defined by the

recurrence in Eq. (40), and /3 at most 5.5.
Let ~(n) = rz”log~n.

(1) [BASE CASEI If k = 2, then just color G with 2 colors. If k = 3, then run Algorithm
lmproved-Approx on G.

(2) [MINIMUM DEGREE] For each vertex L,, if d(c)) < ~(n), make progress
Type 2.

(3) [M; NIMUM SHARING OF NEIGHBORS] For each pair of vertices u, LI, if

(4)

(5)

(6)

l–a(k)

l~(u) n~([))l ~~[-~(k-~),

then make progress using Algorlthm Sharing-Progress. Note that Afgorithm

Sharing-Progress will use Algorithm Multl-Stage-Color recursively on (k – 2)-colorable
graphs.
[INITIAL DISTANCE-2-NEIGHBORS] For each vertex L and each pair i, j ~ [0,..., log, + ~n],

let G,,l,, be the subgraph induced by the set 4(N(t) n I,).

[ADD1TIONAL NEIGHBORS-TAhlNG STAGES] For each graph G, , ,, run Procedure
Iterate-neighbors below on input (n, k, G, , , k – 3).

/If the algorithm makes progress on any o the inputs given, then halt with success.
Otherwise, let G,, Gq be all the graphs returned by Iterate-neighbors, for q =

0((logl+5 t2)2k-4n2k-5).

[VERTEX-COVER APPROXIMATION] Run the BE/ MS vertex-cover algorithm on the graphs
G1,..., Gq.

Procedure Iterate-neighbors: (1z, k, G, iter)

Given: Values n and k. An n-vertex subgraph G of some n-vertex graph G, and a
number of iterations iter.

Outputi o([~t’(log, + ~rn)2]“”) subgraphs of G’ or else progress towards an
0(n a(‘)log ‘(k ‘n)-coloring of G.

(PI) If tter = O, then return G.

(P2) If zter >1, then run Algorlthm Bootstrap on G’ and values a = a(k), ~ = B(L), and
8 = 8(k).

(P3) If Algorithm Bootstrap returns progress towards an O(n “(L ‘log ~~~‘n)-coloring of G,
then halt with success. Otherwise, let H[l, H,n,2 _ , bc the subgraphs returned.

New Approximation Algorithms for Graph Coloring 509

(P4) Now, for each Ifl, (O s 1 s (wr/2) – 1) for each vertex u in Ifl and each index

i,j GIO,logl+ am].

(Note: there are at most rn’(logl +, nz)’ different 4-tuples (1, u, i, j))

(a) Let G,,,,,,, be the subgraph of H, induced by N,(N(L1) n 1,), where neighborhoods

are taken within H1.
(b) Run: Iterate-neighbors (n, k, Gl,{ ,,,,, iter – 1).

THEOREM 20. Algorithm Multi-Stage-Color, giuelt any n-uertex k-colorable

graph, makes progress towards a coloring with O(n “(L)(log n)s 5, colors, for a(k)

as defined in Eq. (40).

Before proving Theorem 20, let us examine the claimed performance more

closely. Let

1
y(k) =

1 – a(k) “

So, Eq. (40) can be written as:

(ay(k)= 2–~+y(k–2)l– (42)

One can see from this equation immediately that y(k) <2 + y(k – 2); that is,

if we increase k by 2, then y increases by less than 2. We can compare this

with the simpler approach from Sectign 6.1. Algorithm Recursive-Color given
there colors k-colorable graphs with O(n “’(~)) colors for a’(k) = 1 – (l/(k –

r)) for some constant r. Thus, the quantity

1
y’(k) =

1 – a’(k)

equals k – r and y’(k) = 2 + y’(k – 2). Since the function g(x) = 1/(1 – x)

is an increasing function with x, for algorithm Multi-Stage-Color the exponent

a does not rise as rapidly as in algorithm Recursive-Color. Thus, the new

approach yields better bounds. Because Algorithm Multi-Stage-Color is slower

than algorithm Recursive-Color, one can achieve time/performance tradeoffs

by running the faster algorithm with the slower algorithm as a base case for

some k = kO. Table I at the beginning of this section shows the results for both

algorithms and for various combinations. In particular, for example, we can

substitute the bound of Theorem 20 for k = 4 into the bound of Theorem 15

to get the following corollary.

COROLLARY 21. Algorithm Recursive-Color using algorithm Multi-
State-Color as a base for k = 4, colors any n-uertex k-colorable graph (k > 4)

with at most:

(
1

0 nl - ~-~/z(log n)+(k-3\2J
)

colors.

PROOF OF THEOREM 20. W7e may assume k > 3 since otherwise, we just run

Algorithm lmproved-Approx k Step (1) of Multi-Stage-Color. Define

l–a(k)

sk(n) = nl–a(~–2),

510 AVRIM BLUM

and let a = a(k) and ~ = /3(k). Steps (2) and (3) of Algorithm

Multi-Stage-Color establish that the graph has a minimum degree of n“log ‘n

and that no two vertices share more than Sk(n) neighbors.

Since G is k-colorable, it must contain an independent set R with DR(V –

R) z (l/(k – l))D(P’ – l?). So, by Corollary 17, one of the graphs G’ = G,,,,,

created in Step (4) will both have size at least:

(d~ln)’
??1, =

Sk(n)logvn

iz2a logz~ n
—

Sk (~)bg7~‘
(43)

and contain an independent set of at least a

fraction of its vertices.’

We now examine the call to procedure Iterate-neighbors. Suppose

Iterate-neighbors is called with a graph G’ of at least nz, vertices containing an

independent set of at least a A, fraction of its nodes. By Theorem 19, if Step

(P3) does not halt with success immediately, then one of the graphs 111
produced will have both a minimum degree of 8nz, n” -1 log ‘n and contain an

independent set R’ with D(R’) > (Al – 28)D(P’(Hl)). Rewriting the latter

inequality, we have D(R’) > (~, – 28)[D(V(HI) – R’) + D(R’)1, SO:

A, – 26
D~(V(Hl) – R’) = D(R’) >

l–A, +28
D(V(HI) – R’).

Using the minimum degree bound and degree ratios above, Corollary 17

implies that one of the sets Gl,,,,,, produced in Step (P4(a)) will both have size

at least m,+ ~ and an independent set of at least a fraction A,+, of its vertices,

where:

a’m:n~”-z(log ~)2~
m 1+1 =

(S,(z’z)log’n)

70ne can verify that the mmlmum degrees and the values m, defmed satisfy the technical
conditions of Corolla~ 17 (mm degree > max(s(1 + 8), (3 log n)/6 2)) and Theorem 19 (ml >>
I/i$*).

New Approximation Algorithms for Graph Coloring 511

and

A, – 2s
A

‘+@- A,+2a
– 58

A, – 48

> l–AL
– 56

(45)

Thus, one of the graphs Gl returned to Step (5) of Algorithm Multi-Stage-Color

will have at least m~ _ ~ vertices and contain an independent set of size at least

&_ ~IV(Gl)1, where we must now solve for m~ _ ~ and Ak _ ~. ❑

Claim 1. A,>l/(k –i)–4’’%for O<isk –2,

PROOF. For i = 1 the claim holds. For i >1, by induction and using Eq.

(45), we have:

(
1

)/(

k–i
A* 2 ~,+ la

k–i+l– k–i+l)
+ 4’+’8 – 136

(

1
>

k–i+l– 2“4+8)l(kf~~l)-’38

1

– 2“4[+’’(ki::1i-13’2k–i–

1
3“4’+16 – 138 (fori<k–2)

‘k–i–

1
> 4’+26.

k–i–
(fori + 12 2).

So, for

1
6 = a(k) =

4klog n ‘

we have:

Claim 2. m, = Q(n(z’+’-z)a “ 722-2’- [sk(n)]l-z’).

❑

(46)

PROOF. One can easily check that the claim holds for the base case of

i = 1, using Eq. (43) and the fact that for /3 = 5.5 that log2Bn > log7n. For

512 AVRIM BLUM

i > 1, we can check inductively that (44) satisfies the claim as follows:

M
20–2m ~n

?711+1
= Q [s,(n)]

(
,l?a–?

=fln(2’”1-2)2u .n2(2–2’). [~k(n)]z(l-~’).

[Sk(n)])

= f@2’+’-J+W.n4-2’+ ’-2 . [sk01)]2-2’+’ -1]

= f@2’+’-2)a.n2-2’+’ . [sL(n)]l-2’+’ .1 •1

so,

mh–~ = @2’-’-2)a ,_2A. J. ~-
1

. [sk(n)l’-2’-2 . (47)

Thus, one of the graphs of Step (5) of Algorithm Multi-Stage-Color will have

an independent set of at least (1/2 – I/log n) of its vertices (from Eq. (46))

and have size at least nz~ _ ~, as given in Eq. (47). By Lemma 11, Step (6) will

find an independent set of size at least rnk _ ~/log n.

Thus, to prove Theorem 20 we must just show that rnk _ ~/log n =

Q(n/(na(k) log ~(~) n)). Since ~(k) is set to 5.5, it is enough to have m~-2 =

Q(rzt - “(L)). Equivalently, using Eq. (47), taking log. of both sides, and substi-

tuting in Sk(n) = n(l – a(k)) /(1 – a(k – 2)), we just need to show that:

Rearranging terms, this formula is equivalent to:

I 1 – a(k)
[1 – a!(k)](2~-1 – 1) – 2L-2 <

I

(1 – ~~-~)
l–a(k–2)

or:

~L-2

[

1
Zk- 1

–l–

I

(1 - z~-~)

1 – a(k) < l–a(k–2)

Dividing both sides by – 2k - z and rearranging one final time, we find that we

just need:

But, this

algorithm

1 1
>~—p

1 – a(k) – ~k–2
1 F-41 – a(k – 2) 2~--

formula is exactly the definition of a(k) given in Eq. (40). So

Multi-Stage-Color works as claimed. ❑

7. Possibilities for Improvement

Algorithm First-Approx performs most poorly when (1) many vertices share

about ~ZO2 neighbors in common, and (2) the average vertex degree is about

n“’. If the edges in the graph were distributed randomly, this combination of

events would likely not occur; instead, the graph must contain high-density

New Approximation Algorithms for Graph Coloring 513

regions. For example, a graph could have properties (1) and (2) above if it

consists of a collection of “clusters” of size @(n”h) such that each vertex inside

a given cluster has @(n04) neighbors within the cluster and @(n” 4, neighbors

distributed throughout the other clusters. Thus, if the edges within a cluster

were distributed randomly, then 2 vertices inside the same cluster share on

average @((n(1J)2/nOG) = @(noz) neighbors in common, even though the

degrees are low. (The purpose of giving to each vertex @(n O’) neighbors in

the other clusters is so that the distance-2 neighbor set N(N(u)) for each ver-

tex u may have size Q(Iz” 8, to avoid immediately making progress through

Corolla~ 2.)

Algorithm lmproved-Approx achieves better performance by taking advan-

tage of such high density regions when they are found. However, one other

possible approach is the following. Suppose by removing 9/10 of the edges in

the graph, one could somehow get rid of such high-density regions and prove a

stronger analog of Theorem 3 (bounding the number of shared neighbors of

two vertices). Then, Theorems 7 and 8 would still apply to show that some set

T = N,(N(u) n 11) in the new graph is both large and has a large fraction of its

vertices red. The point here is that even though an independent set in the new

graph might not be an independent set in the original graph, there still must be

some color class in 3-coloring of the original graph that satisfies the A = 1/2

condition (see Theorem 7) in the new graph. Also, the average degree has only

changed by a constant factor, so the set T produced will still be large. (The

minimum degree can be raised easily to a constant fraction of the average in

order to apply Corollary 9.)

A different way one might be able to do significantly better is to consider

distance-3 neighborhoods of vertices (or perhaps even distance-t neighbor-

hoods for larger t). However, all the techniques given here for forcing expan-

sion—that is, for forcing the set found to be large—seem to break down

completely in this case.

8. Open Problems and Conclusion

We have described here an algorithm guaranteed to color any 3-chromatic

graph with 0(n3/g) colors in the worst case, and shown how these techniques

can be used to improve previous bounds for coloring k-chromatic graphs for

k >3 as well. Clearly, however, there remains a long way to go. There is no

reason to believe an d(n3/8) bound is intrinsic to the coloring problem. In fact,

for coloring 3-colorable graphs, to date there is no lower bound known greater

than 3. That is, it remains unknown whether there is any intrinsic reason why

one could not 4-color any given 3-colorable graph in polynomial time. It would

be very significant contribution to this area if one could make headway in this

direction. Some such headway has been recently made by Lund and

Yannakakis [1993], who provide a collection of exciting new lower bounds,

though the question about 4-coloring 3-colorable graphs remains open.

Appendix A. The Vertex-Couer/Independen t-Set Approximation Algorithm

For completeness, we include here a simplified version of the Vertex-Cover

approximation algorithm of Bar-Yehuda and Even [1985] and Monien and

Speckenmeyer [1985], specialized to its use in this paper. This version is taken

from a treatment given by Boppana and Halld6rsson [1990]. We describe the

514 AVRIM BLUM

algorithm as an Independent Set approximation algorithm for the special case

where the input n-vertex graph contains an independent set of at least

+(1 – l\log 7z) of its vertices. The output of the procedure is an independent

set of size !Q(n\log n).

Algorithm Approx-IS [SIMPLIFIED VERSION OF THE BE/MS ALGORITHM]

Given: An n-vertex graph G which has an independent set of size at least ;(1 – I/log n)n.
Outputi An independent set of size at least Q(n/log n).

(1)

(2)
(3)
(4)
(5)

(6)

(7)

Remove all odd cycles of length <21 + 1 for 1 = (log n)/6 – 1/2. (See Note (1)

below.)
(Assume for simplicity that (log n)/6 – 1/2 is an integer.)

Initialize Z, the independent set found, to ~.

Choose u c V.
For i c {O, ..., 1}, let ~ = the set of vertices of distance i from L}.

Fori~{O,...,l}, let S,=~U~_2 U~_4 U....

Note that ~, is an independent set since there are no odd cycles of length <21 + 1.
Also, note that lV(,YL) = St+,.

Let tO <1 be an index such that /jV(,S,,,)l < n]lfi+lll,s,,,l.

This property must hold for some if] = {O,..., 1} because otherwise: IN(s,)I > nl\(i+ ‘)I,sII
> n’/(~+’)lS_,l > }1’/(/+’)]~/_21 > . . . > ~1(1+1)/(1+ ljlsOl = FI, a contradiction.

Letl~Zu S, andlet V+V– S –N(s).
‘ o ‘ o ~()

If V is nonempty, then go back to Step (3). Otherwise, output set 1. See note (2’) below.

Note (l).Step (1) removes all odd cycles of length <21 + 1. An odd cycle of length

2i + 1 may have at most i vertices in any independent set in G. So, if m vertices remain

after this step (so n – m are removed), we have removed at most (1/(21 + I))(n – m)

vertices from any independent set in G. Thus, the maximum independent set in G may have

size at most m + 1/(21 + l)(n– m).This implies that the number of vertices m remaining
is at least n/log n since otherwise,

1 ~ ~1 + ~rl _ ,n)(log n/6 - 1/2
w+(n-m)-

21+1 (log n)/3

log n – 3
=m+ (n-m)

2 log n

?1 n 3n
——

7–
—+—
log n 2 logzn

< ha” (for n sufficiently large)

This contradicts our assumption on the largest independent set in G.

Note (2). By Note (1), after Step (1) we know graph G has at least n/log n vertices. Each

application of SteP (6) removes from V at most O(nl”l+ 1‘) times as many vertices as added
to 1. So, the final set Z reported in Step (7) must be large enough so that lZ\H 1/(1+ 1) =
!2(n/log n). That is, it must be the case that:

(III = Q ‘n-’/(’+’)
H

1

log n
=n _lll/(/+ 1)

log n 1

For

log n 1
l=—

6 ‘~’

New Approximation Algorithms for Graph Coloring 515

we have:

1 (log n)/6 - 1/2

1+1= (log n)/6 + 1/2

logn–3 logn–6
—— >

logn+3 log n
=1

So, finally, this implies that:

(III=QJ- nl–(, /lOgn
log n)

“4+”2-6)
()=QJ

log n “

6

log n

❑

ACKNOWLEDGMENTS. I would like to thank Bonnie Berger, Ron Rivest, John

Rompel, David Shmoys, and Cliff Stein for many helpful discussions.

REFERENCES

ANGLUIN, D., AND VALIANT, L. G. 1979. Fast probabilistic algorithms for Hamiltonian circuits
and matchings. J. Comput. Syst. Sci. 18, 2 Apr., 155–193.

ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1992. Proof verification and
hardness of approximation problems. In Proceedings of the 33rd Annual Symposu*m on Founda-

tions of Computer Science (Pittsburg, Pa., Oct.) IEEE, New York, pp. 14–23.

BAR-YEHUDA, R., AND EVEN S. 1985. A local-ratio theorem for approximating the weighted

vertex cover problem. Arm. Dis. Math. 25 (1985), 27–46.

BERGE, C. 1973. Graphs and Hypergraphs. North-Holland, Amsterdam, The Netherlands.

BERGER, B., AND ROMPEL J. 1990. A better performance guarantee for approximate graph

coloring. Algortthmlca-5, 459–466.

BLUM, A. 1989. An O(rr[’ 4)-approximation algorithm for 3-coloring (and improved approxima-

tion algorithms for k-coloring). In Proceedings of the 21st Annual ACM $vnposium on Theoty of
Computing (Seattle, Wash., May 15-17). ACM, New York, pp. 535-542.

BLUM, A. 1992. Some tools for approximate 3-coloring. In Proceedings of the 31st Annual

Sywrposiut?t on FOLfiL&LtiOnS of Computer Science (St.Louis, Mo,, oct.) IEEE, New York, pp.
554-562.

BLUM, A. 1991. Algorithms for approximate graph coloring. Ph.D. dissertation, Massachusetts

Institute of Technology, Cambridge, Mass., May 1991. (MIT Laboratory for Computer Science
Technical Report MIT/LCS/TR-506, June 1991).

BOPPANA, R. B., AND HALLD6RSSON, M. M. 1990. Approximating maximum independent sets

by excluding subgraphs. In Proceedings of the 2nd Scandina[,lan Workshop on ,4[gOVit/LnL Theoty,

Lecture Notes in Computer Science (July) Vol. 447. Springer-Verlag, New York, pp. 13-25.
BRIGGS, P., COOPER, K. D., KENNEDY, K. AND TORCZON, L. 1989. Coloring heuristics for

register allocation. In Proceedings of the SIGPLAN ’89 Conference on Programnurrg La?zguage

Design and Itnplementation, (Portland, Ore., June 21 -23). ACM, New York, pp. 275-284.

CHAITIN, G. J. 1982. Register allocation and spilling via graph coloring. In Proceedings of the

SIGPLAN ’82 Symposmm on Cot?zpiler Construction (Boston, Mass., June 23-25). ACM, New
York, pp. 98-105.

CFtmm, G. J., AUSLANDER, M. A., CHANDRA, A. K., COCKE, J., HOPKINS, M. E., AND
MAKKSI MN, P. W. 1981. Register allocation via coloring. Compur. Lang. 6 47–57.

DYER, M. E., AND FRIEZE, A. M. 1989. The solution of some random NP-Hard problems in
polynomial expected time. J. Algorithms, 10, 45 1–489.

HALLD6RSSON, M. M. 1993. A still better performance guarantee for approximate graph

coloring. Ins. Proc. Lett. 45, 1,19–23.

516 AVRIM BLUM

KUCERA, L. 1977. Expected behawor of graph colouring algorithms. In Lecture Notes m

Computer Sczence, Vol. 56. Springer-Verlag, New York, pp. 447-457.

LUND, C., AND YANNAtCAKIS, M. 1993. On the hardness of approximating minimization prob-
lems. In Proceedings of the 25th Annual ACM Syrnposzum on Theory of Cornputuzg (San Diego,

Calif. May 16-18). ACM, New York 286-293.

MONIEN, B., AND SPECKENMEYER, E. 1985. Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acts Znf. 22, 115-123.

NELSON, R., AND WILSON, R. J., EDS. 1990. Graph C’olourmgs. Longman Scientific and Techni-
cal. Hardon, Essex, United Kingdom.

TURNER, J. S., 1988. Almost all k-colorable graphs are easy to color. ~. Algorithms 9, 63-82.

VLSHWANATHAN, S. 1990. Randomized online graph coloring (prelimina~ version). In Proceed-

ings of the 31st Annual Symposzum on Foundations of Computer Science. (St. Louis, Oct.). IEEE,

New York, pp. 464-469.

WIGDERSON, A. 1983. Improving the performance guarantee for approximate graph coloring.
J. ACM 30, 4 (Oct.) 729-735.

RECEIVED AUGUST 1989; REVISED SEPTEMBER 1991; ACCEPTED FEBRUARY 1993

Juumdl ut the A~.ncldtlm fm Cwnp”t,ng Mach,wry Vd 41 No 7 M.iY lYY.J

