IEICE TRANS. FUNDAMENTALS, VOL.E86-A, NO.5 MAY 2003

|PAPER Special Issue on Discrete Mathematics and Its Application |

On Approximation Algorithms for Coloring k-colorable

Graphs

Xuzhen XIE!, Takao ONO', Nonmembers, and Tomio HIRATA', Member

SUMMARY  Karger, Motwani and Sudan presented a graph
coloring algorithm based on semidefinite programming, which
colors any k-colorable graph with maximum degree A using
O(A1=2/kY colors. This algorithm leads to an algorithm for
k-colorable graph using (~)(n1*3/(1“q)) colors. This improved
Wigderson’s algorithm, which uses O(nlfl/(kfl)) colors, con-
taining as a subroutine an algorithm using (A + 1) colors for
graphs with maximum degree A. It is easy to imagine that an
algorithm which uses less colors in terms of A leads to an algo-
rithm which uses less colors in terms of n.

In this paper, we consider this influence assuming that we have
an algorithm which uses O(A1~#/F) colors for 2 < z < 3. Specif-
ically, we will show that the algorithms of Karger et al., of Blum
and Karger and of Halperin et al. can be improved under this
assumption.

key words:  Graph coloring, approximation algorithms, NP-
hard, mazimum degree.

1. Introduction

A proper vertex coloring of a graph G = (V, E) is an
assignment of colors to its vertices such that no two ad-
jacent vertices receive the same color. Equivalently, a
k-coloring of G is a partition of its vertices into k inde-
pendent sets. It is well known [1] [2] that the problem
of properly coloring a k-colorable graph with & colors
is NP-hard, for any k& > 3.

Wigderson [3] gave a simple algorithm for coloring
k-colorable graphs with O(n'~/(=1) colors. Blum
[4] improved the result to O(n®) colors, where a3z =
3/8,a4, = 3/5,a5 = 91/131,- - .. Karger, Motwani
and Sudan [5] showed, using semidefinite programming,
that k-colorable graph with maximum degree A can
be colored with O(A!=2/F) colors. Combined with the
technique of Wigderson [3], Karger et al. [5] presented
an O(n'—3/(+1))_coloring for k-colorable graph. Later,
Blum and Karger [6] obtained an O(n?/'*)-coloring
for 3-colorable graph and most recently, Halperin,
Nathaniel and Zwick [7] provided an O(n®*)-coloring
for k > 4, where by = 7/19,b5 = 97/207, - - -.

The technique of Wigderson [3] leads to the interest
with the maximum degree A. For example, Wigder-
son [3] and Karger et al. [5] only used different algo-
rithms when the maximum degree is relatively small
and obtained the different results in terms of n. The
algorithm of Wigderson [3] uses (A + 1)-coloring al-
gorithm for the graph with maximum degree A and
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colors the entire graph with O(n'~1/(=1) colors. On
the other hand, the algorithm of Karger et al. [5] uses
O(A'=?/%)-coloring algorithm for the graph with max-
imum degree A and leads to an O(n!~3/(*+1))_coloring
for the entire graph. Thus, we can easily deduce that
if we have an algorithm using less colors in terms of
A, then we can derive an algorithm using less col-
ors in terms of n. In this paper, we assume that we
have an algorithm that colors any k-colorable graph
with maximum degree A using O(A'~%/%) colors where
2 < x < 3, then how we could improve the results for
k-colorable graph.

The rest of the paper is structured as follows. In Sec-
tion 2, we give some definitions. In Section 3, we show
the improvement over the algorithm of Karger et al.
[6]. Sections 4 and 5 are for the improvement over
the algorithms of Blum and Karger [6] and Halperin
et al.[7], respectively. Finally, concluding remarks is in
Section 6.

2. Preliminaries and Definitions

Let us introduce the graph-theoretic notation that will
be used throughout this paper. Given a graph G, let
V denote the vertices of G and E denote the edges of
G. We will use N(v) to denote the neighborhood of
a vertex v, d(v) to denote the degree of v and A to
denote the maximum degree of the graph. That is, for
G=(V,B),

N(v) = {ul(v,u) € E},

d(v) = |N(v)|,
A= grlea‘;c{d(v)}.

The subgraph of G induced by U C V is the graph
Gy = (U, F), where

F = {(u,w)|u € U,w € U, and (u,w) € E}.
3. The O(n!'~(®+t)/(k+1))_coloring
3.1 The Karger-Motwani-Sudan Algorithm
Karger, Motwani and Sudan [5] introduced the no-
tion of wector colorings of a graph, which is closely

related to Lovasz’s orthogonal representations and v-
function [8] [9] :



Definition ([5]) Given a graph G = (V,E) on n
vertices and a real number £ > 1, a vector k-coloring
of G is an assignment of n-dimensional unit vectors v;
to each vertex i € V, such that for any two adjacent
vertices ¢ and j the dot product of their vectors satisfies
the inequality:

1
(viy05) <~ 1)
Karger, Motwani and Sudan [5] obtained the follow-
ing results.
Theorem 1 ([5]) Any k-colorable graph on n vertices
with mazimum degree A can be colored, in probabilistic
polynomial time, using O(A*~2/%) colors.
Theorem 2 ([5]) Any k-colorable graph on n vertices
can be colored, in probabilistic polynomial time, using

O(n*=3/(+1)Y colors.
3.2 The O(n'~@+)/(k+1))_coloring

Corollary 3 Suppose we have an algorithm A that col-
ors any k-colorable graph with mazimum degree A using
O(A'=2/%) colors, where 2 < x < 3. Then we can de-
riwe an_algorithm B that colors any k-colorable graph
using O(nC*) colors, where Cy, < 1 — (z +1t)/(k + 1),
for k>3 and t = 0.928.

Proof: We use induction on k.

k = 3. While A > n”, let v be a vertex with
d(v) = A, 2-color the subgraph Gy, induced by N (v),
set the colored vertices aside and repeat on the re-
maining graph using new colors. When A < n”, we
apply algorithm A to color the remaining graph using
O(n(t=%)?) colors. If

x
l—p= (1 3) 2 (2)
then the 3-colorable graph can be colored with
O(nl_%) colors.

Assume inductively that the claim is true for (k—1)-
colorable graph. That is, algorithm B colors any (k—1)-
colorable graph using O(n“*-1) colors. Now we will
prove the inductive assertion of k.

While A > n”, apply algorithm B on the subgraph
G n(v) induced by N(v) of a vertex with d(v) = A. Be-
cause G (y) is (k — 1)-colorable, algorithm B produces
a coloring of G n(,) using O(|N (v)|*~1) colors, from
which an independent set of size Q(|N(v)|!~Ck-1) >
Q(n(1=C-1)P) is easily extracted. Giving the same
color to all the vertices in this independent set, we
set all the colored vertices aside and repeat on the re-
maining graph using new colors. When A < nf, we
apply algorithm A to color the remaining graph us-
ing O(n'=%)?) colors. Then algorithm B colors any
k-colorable graphs using O(nC*) colors if the following
equations hold:
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= (1-7)r (3)
(1-F)p=1-0-Cp (4)

Solving the equations with respect to Cj, we obtain
the recurrence relation:

X

Cp=— "k 5
ARG A 5)
We can rewrite this relation as follows:
1 T 1
=1 (1 — _) —_ 6
i—c, tUT%)iten (6)
and for k = 3,
1 6—x
= . 7
1-C3 3 (7)
Thus
k | I'(k—z+1 —T
1—lck = ac_ﬂ + % (F(4—x)) (GT - mi-l-l) : (8)

It is obvious that for some ¢, the following inequality
holds:

k+1< 1 <k+1

9
z4+1 - 1-C, ~ z+t’ ©)
which implies
rz+1 T+t
1-— <Cp<1- . 10
e (10)

For k = 3, (10) is reduced to the following inequality:

1-_ 3 oq_=tt

6—x — 4 (11)

It can be rewritten as follows:

z? + (t —6)x + (12 — 6t) > 0, (12)
which is true if the following one holds:

(t—6)% —4(12 — 6t) > 0. (13)

Thus we obtain that t < —6 + 44/3 = 0.928.
Assume inductively that for K — 1 and ¢ < 0.928,

¢
Ok_1§1—x;: . (14)

We can obtain the following inequality from (5):

Cp < L&
k= T T
2-3-(1-59)

T+t
k+t
< 1_ac+t
- k+1

(15)

By induction on k, we conclude that Cx < 1 — (x +
t)/(k+1) for all £k > 3. |
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We now discuss the behavior of C, = Ci(z) as a
function of z. For z and z’ such that 2 < z < 2’ < 3,
we can show directly from (7) that for k = 3,

1 62
1—03(1‘/)_ 3
< 6—zx
3
1
= " ].
1 - Cs() (18)

By induction on k, we can show the following inequal-
ity:

o =+ (07%) (Camm)
<1+(1—%)<ﬁ>
<1+(1—%)<#_1(x)>

1
P — 17
1-— Ck(x) ( )
We have shown that for all £k > 3, #}C(w) is a de-

creasing function of x, which implies that Cj is also a
decreasing function of x. Note that the algorithm pre-
sented by Karger et al. [5] is the case where z = 2.
(In this case, We can obtain that C, = 1—3/(k + 1)
from (8).) Thus, if there were an algorithm that colors
any k-colorable graph with maximum degree A using
O(A'=/F) colors, where 2 < z < 3, then we could de-
rive an algorithm using less colors than Karger et al.
[5] for any k-colorable graph.

4. The 3-colorable Graph
4.1 The Blum-Karger Algorithm

Applying Blum’s algorithm (Theorem 13 of [4]) and
combining with Karger et al. [5] for 3-colorable graph,
Blum and Karger [6] provided the following results.
Lemma 4 ([6]) In any 3-colorable graph with average
degree exceeding 2n”, we can make progress towards an
O(n*)-coloring where o = 2(1 — p).

Theorem 5 ([6]) There is a polynomial time algorithm
to color any 3-colorable graph with O(n/1%) colors.

4.2 Combination of Blum’s Algorithm and Algorithm
A

We are given a 3-colorable graph. If its average de-
gree is at least 2n”, we can color the graph using
O(n®) = O(n2(1=) colors based on Lemma 4. Other-
wise, the graph has at least 5 vertices of degree less
than 4n”. The subgraph induced by those vertices
clearly has maximum degree A < 4n”, and we color
the subgraph by algorithm A using O(n1=%)?) colors.

This coloring must contain an independent set of size
Q(n'~(1=3)P). Then we can color the 3-colorable graph
using O(max{n(*=%)¢ n3(1=,)}) colors. Let p =
we obtain the following result.

9
24—5z°

Corollary 6 There is an algorithm to color any 3-
~ ~ 9—3x
colorable graph with O(nB2) = O(n27=5=) colors.

We can rewrite Bs as follows:

3 9
By==(1-—— 18
s 5< 24—5x>’ (18)

thus Bs is decreasing with k2 When 2 < z < 3, it
improves the result of O(n14)-coloring for 3-colorable
graph.

5. A Look at Algorithm Combined-Color of
Halperin et al.

5.1 Algorithm Combined-Color

By combining the coloring algorithms of Karger et al.
[5], the combinatorial coloring algorithms of Blum [4],
and an extension of a technique of Alon and Kahale [10]
for finding relatively large independent sets in graphs,
Halperin, Nathaniel and Zwick [7] obtained the new
results.

Lemma 7 ([7]) Let G = (V, E) be a k-colorable graph
on n vertices. Then, an independent set of G of size
Q(nf®) can be found in polynomial time, where f(k) =
3/(k+1) for k> 3.

Theorem 8 ([7]) Let G = (V, E) be a k-colorable graph
on n vertices that contains an independent set of size
at least n/k. Then, an independent set of G of size
Q(nf®)Y can be found in polynomial time, where f(k) =
3/(k+1) fork>3.

Theorem 9 ([7]) Algorithm Combined-Color runs in
polynomial time and it colors any k-colorable graph on n
vertices using O(n®*) colors, where as = 0,3 = 3/14,
and ap, = 1 — 6 2),f07‘k24.

FFAr3(1—2/k)/(1—an_

These results came from the following simple obser-
vation given by Blum [4]:
Lemma 10 ([4]) Let k > 3 be an integer and 0 < a <
1. If in any k-colorable graph G = (V, E) on n vertices
we can find, in polynomial time, at least one of the fol-
lowing:

1. Two vertices u,v € V that have the same color
under any valid k-coloring of G (Same Color),

2. An independent set I C V of size (n'=)(Large
Independent Set),
then, we can color every k-colorable graph, in polyno-
mial time, using O(n®) colors.
Theorem 11 ([4]) Let G = (V,E) be a k-colorable
graph on n vertices with minimum degree dy,;, in which
no two vertices have more than s common neighbors.



Then, it is possible to construct, in polynomial time,
a collection T of O(n) subsets of V, such that at
least one T 6 T satisfies the following two conditions:

(i) |T| > Q( ”“") (i) T has an independent subset of
size at least (75 — O(logn))|T|

5.2 Algorithm Combined-Color(z)

Using algorithm A, we can derive the following result
similar to Lemma 7 [7] for finding a relatively large
independent set in graphs.

Corollary 12 Let G = (V, E) be a k-colorable graph
on n vertices. Then, an independent set of G of size
Q(nf(k)) can be found in polynomial time, where 2 <
r<3,t=0928 and f(k) =1—Cj > (x +t)/(k+1)
for k> 3.

Proof: The proof is by induction on k.

k = 3. We use the result in Section 3. Apply the de-
rived algorlthm B to color the 3-colorable graph using
O(n%) = O(n'
dent set of size Q(n1=C2) = Q(nT=) > Q(n
extracted.

Assume inductively that for (k — 1)-colorable graph,
we can find an independent set of size Q(n/(*=1) =
Q(nl=C-1) > Q(n*F"). Now for k-colorable graph, we
describe two ways of finding independent sets of G. Us-
ing the algorithm A to find an independent set of size
Q(xZs7)- Alternatively, apply derived algorithm B
on the subgraph Gy, induced by N(v) of a vertex v
with d(v) = A. Because Gy (y) is (k—1)-colorable, then
we can find an independent set of size Q(Af(*#~1)), Tak-
ing the larger of these two independent sets, we obtain
an independent set of G of size

e )
>0 <n+f<k—”3> =0 (n®).

Similar to Corollary 3, we can prove that f(k) =1 —

x4+t
Cp > T as required.

5= I) colors, from which an indepen-
x+40.928
4

) is

Based on the Lemma 3.3 [7] and Corollary 12, we can
obtain the following result, which is similar to Theo-
rem 8 [7]. Here we omit the proof, which is the same
as the one presented by Halperin et al. [7].

Corollary 13 Let G = (V, E) be a k-colorable graph
on n vertices that contains an independent set of size
at least n/k. Then, an independent set of G of size
Q(nf(k)) can be found in polynomial time, where 2 <
r<3,t=0928 and f(k) =1—Cj > (x +t)/(k+1)
for k> 3.
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Now we derive the following algorithm Combined-
Color(z) for k > 4.

Algorithm Combined-Color(z) for k > 4

1. Repeatedly remove from the graph G vertices
of degree less than n”. Let U be the set of vertices
so removed and D be the average degree of Gy, thus
D < n”.

2. If [U] > %, apply algorithm A to find an indepen-
dent set of Gy of size Q(n/D'=*/k) > Q(nt~(1-2/kp),
If1—-(1-=z/k)p=1— By, then we make progress of
type 2.

3. Otherwise(|U| < §), let W =V — U. Note that
W[ > % and that the minimum degree dy,in in Gw
satisfies d,,in > nP.

4. For every u,v € W, consider the set S =
N(u) N N(v). If |S| > n'=A, then apply the color-
ing algorithm recursively on Gg and (k — 2). If Gg is
(k — 2)-colorable, then the algorithm produces a color-
ing of Gs using O(|S|B*-2) colors, from which an inde-
pendent set of size Q(|S|'~Br—2) > Q(n(1-Br-2)1-0))
is easily extracted. If (1 — Bg_2)(1 — ) =1 — By, then
we make progress of type 2. If the coloring returned by
the recursive call uses more than O(|S|B*-2) colors, we
can infer that Gg is not (k — 2)-colorable and thus, u
and v must be assigned the same color under any valid
k-coloring of GG, then we make progress of type 1.

5. Otherwise we know that |S| < n'=# for every
u,v € W. Also, we know that the minimum degree
dmin In Gy satisfies d,,i, > n”.

6. We now apply Blum’s algorithm, with d,,,;,, > n”
and s < n'~P, and obtain a collection 7 of O(n)
subsets of W such that at least one 7' € 7T satisfies
IT| > Q( ”“") > Q(n?*F-1) and T contains an inde-
pendent set of size at least (725 — O(5555))|T-

7. Now apply the result of Corollary 13 on Gr,
for each T' € 7. In at least one of these runs we ob-
tain an independent set of size Q(n(1~Cr-1)2p+6-1)) Tf
(1 —-Ck-1)(2p+8—1) = 1— By, then we make progress
of type 2.

Algorithm Combined-Color(z) colors any k-colorable
graph with O(nP*) colors if the following equations
hold.

1—(1—%),0:1—Bk, (19)
(1= Br—2)(1-08) =1 - By, (20)
(1-Ck-1)(2p+B—1) =1-By. (21)

Solving these equations with respect to By, we obtain
the recurrence relation:

1-Cr—1
1+ 1-Bg_»

1+ (1= Co) 3 + m55)

By, =

(22)

We can rewrite this relation as follows:



XIE et al.: ON APPROXIMATION ALGORITHMS FOR COLORING K-COLORABLE GRAPHS

= 1 {24+ (- D= + =)} (@9)

and Bs =0, B3 = (9 — 3z)/(24 — 5x). Note that Bj is
decreasing with z for 2 < z < 3.

The results of Halperin et al. [7] can also be rewritten
as follows:

l—lozk = % {2 +(1- %)(1—(11—3/143) + 1—01;%2)} » (24)

and oz =0, az = 3/14.

We consider the behavior of By, = By () as a function
of z. In Sections 3 and 4, we have shown that both Cj_1
and Bj are decreasing with z and C_1 < 1-3/k, B3 <
asz. Similar to the discussion in Section 3, we can show
that for all k& > 4, #k(x) is a decreasing function of x.
This implies that By is also a decreasing function of z.
Note that the results of Halperin et al. [7] correspond
to the case where x = 2. Thus, for 2 < z < 3 and
k > 4, we could color any k-colorable graph with less
colors than Halperin et al. [7].

By Corollary 3,1let C, =1— (z+¢)/(k+ 1), we can
rewrite (23) as follows:

11 k z 1
1-Br 5{1+z_izts+(1_%) 1—Bk,2}'
It can be proved that for 2 < z < 3, t = 0.928 and
k > 4, the following equation holds:
1 k+t—-1 x(3-1)
1-B,  z+t  k(z+t)

(25)

+ ﬂk, (26)

where () satisfies the following recurrence relation:

z2—-2)3-t) k-—=x
2k(k — 2)(z +1t) 2k

1
< —0r_o.
_25k2
We can obtain that
T+t 1
1-——+0(—=).
o (w)

6. Concluding remarks

Br = Br—2

By, = (27)

If there were an algorithm that colors any k-colorable
graph with maximum degree A using O(A'~%/%) colors
where 2 < x < 3 and k > 3, we have derived some
improved results for k-colorable graph. The remaining
interesting problem is how to find such an algorithm.
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