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SUMMARY Karger, Motwani and Sudan presented a graph
coloring algorithm based on semidefinite programming, which
colors any k-colorable graph with maximum degree ∆ using
Õ(∆1−2/k) colors. This algorithm leads to an algorithm for
k-colorable graph using Õ(n1−3/(k+1)) colors. This improved
Wigderson’s algorithm, which uses O(n1−1/(k−1)) colors, con-
taining as a subroutine an algorithm using (∆ + 1) colors for
graphs with maximum degree ∆. It is easy to imagine that an
algorithm which uses less colors in terms of ∆ leads to an algo-
rithm which uses less colors in terms of n.
In this paper, we consider this influence assuming that we have
an algorithm which uses Õ(∆1−x/k) colors for 2 < x < 3. Specif-
ically, we will show that the algorithms of Karger et al., of Blum
and Karger and of Halperin et al. can be improved under this
assumption.
key words: Graph coloring, approximation algorithms, NP-
hard, maximum degree.

1. Introduction

A proper vertex coloring of a graph G = (V,E) is an
assignment of colors to its vertices such that no two ad-
jacent vertices receive the same color. Equivalently, a
k-coloring of G is a partition of its vertices into k inde-
pendent sets. It is well known [1] [2] that the problem
of properly coloring a k-colorable graph with k colors
is NP-hard, for any k ≥ 3.
Wigderson [3] gave a simple algorithm for coloring

k-colorable graphs with O(n1−1/(k−1)) colors. Blum
[4] improved the result to Õ(nak) colors, where a3 =
3/8, a4 = 3/5, a5 = 91/131, · · ·. Karger, Motwani
and Sudan [5] showed, using semidefinite programming,
that k-colorable graph with maximum degree ∆ can
be colored with Õ(∆1−2/k) colors. Combined with the
technique of Wigderson [3], Karger et al. [5] presented
an Õ(n1−3/(k+1))-coloring for k-colorable graph. Later,
Blum and Karger [6] obtained an Õ(n3/14)-coloring
for 3-colorable graph and most recently, Halperin,
Nathaniel and Zwick [7] provided an Õ(nbk)-coloring
for k ≥ 4, where b4 = 7/19, b5 = 97/207, · · ·.
The technique of Wigderson [3] leads to the interest

with the maximum degree ∆. For example, Wigder-
son [3] and Karger et al. [5] only used different algo-
rithms when the maximum degree is relatively small
and obtained the different results in terms of n. The
algorithm of Wigderson [3] uses (∆ + 1)-coloring al-
gorithm for the graph with maximum degree ∆ and
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colors the entire graph with O(n1−1/(k−1)) colors. On
the other hand, the algorithm of Karger et al. [5] uses
Õ(∆1−2/k)-coloring algorithm for the graph with max-
imum degree ∆ and leads to an Õ(n1−3/(k+1))-coloring
for the entire graph. Thus, we can easily deduce that
if we have an algorithm using less colors in terms of
∆, then we can derive an algorithm using less col-
ors in terms of n. In this paper, we assume that we
have an algorithm that colors any k-colorable graph
with maximum degree ∆ using Õ(∆1−x/k) colors where
2 < x < 3, then how we could improve the results for
k-colorable graph.
The rest of the paper is structured as follows. In Sec-
tion 2, we give some definitions. In Section 3, we show
the improvement over the algorithm of Karger et al.
[5]. Sections 4 and 5 are for the improvement over
the algorithms of Blum and Karger [6] and Halperin
et al.[7], respectively. Finally, concluding remarks is in
Section 6.

2. Preliminaries and Definitions

Let us introduce the graph-theoretic notation that will
be used throughout this paper. Given a graph G, let
V denote the vertices of G and E denote the edges of
G. We will use N(v) to denote the neighborhood of
a vertex v, d(v) to denote the degree of v and ∆ to
denote the maximum degree of the graph. That is, for
G = (V,E),

N(v) = {u|(v, u) ∈ E},
d(v) = |N(v)|,
∆ = max

v∈V
{d(v)}.

The subgraph of G induced by U ⊆ V is the graph
GU = (U, F ), where

F = {(u,w)|u ∈ U,w ∈ U, and (u,w) ∈ E}.

3. The Õ(n1−(x+t)/(k+1))-coloring

3.1 The Karger-Motwani-Sudan Algorithm

Karger, Motwani and Sudan [5] introduced the no-
tion of vector colorings of a graph, which is closely
related to Lovász’s orthogonal representations and ϑ-
function [8] [9] :
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Definition ([5]) Given a graph G = (V,E) on n
vertices and a real number k ≥ 1, a vector k-coloring
of G is an assignment of n-dimensional unit vectors vi
to each vertex i ∈ V , such that for any two adjacent
vertices i and j the dot product of their vectors satisfies
the inequality:

hvi, vji ≤ −
1

k − 1 . (1)

Karger, Motwani and Sudan [5] obtained the follow-
ing results.
Theorem 1 ([5]) Any k-colorable graph on n vertices
with maximum degree ∆ can be colored, in probabilistic
polynomial time, using Õ(∆1−2/k) colors.
Theorem 2 ([5]) Any k-colorable graph on n vertices
can be colored, in probabilistic polynomial time, using
Õ(n1−3/(k+1)) colors.

3.2 The Õ(n1−(x+t)/(k+1))-coloring

Corollary 3 Suppose we have an algorithm A that col-
ors any k-colorable graph with maximum degree ∆ using
Õ(∆1−x/k) colors, where 2 < x < 3. Then we can de-
rive an algorithm B that colors any k-colorable graph
using Õ(nCk) colors, where Ck ≤ 1 − (x + t)/(k + 1),
for k ≥ 3 and t = 0.928.

Proof: We use induction on k.
k = 3. While ∆ ≥ nρ, let v be a vertex with

d(v) = ∆, 2-color the subgraph GN(v) induced by N(v),
set the colored vertices aside and repeat on the re-
maining graph using new colors. When ∆ ≤ nρ, we
apply algorithm A to color the remaining graph using
Õ(n(1−

x
3 )ρ) colors. If

1− ρ =
³
1− x

3

´
ρ, (2)

then the 3-colorable graph can be colored with

Õ(n1−
3

6−x ) colors.
Assume inductively that the claim is true for (k−1)-

colorable graph. That is, algorithmB colors any (k−1)-
colorable graph using Õ(nCk−1) colors. Now we will
prove the inductive assertion of k.
While ∆ ≥ nρ, apply algorithm B on the subgraph

GN(v) induced by N(v) of a vertex with d(v) = ∆. Be-
cause GN(v) is (k− 1)-colorable, algorithm B produces

a coloring of GN(v) using Õ(|N(v)|Ck−1) colors, from
which an independent set of size Ω̃(|N(v)|1−Ck−1) ≥
Ω̃(n(1−Ck−1)ρ) is easily extracted. Giving the same
color to all the vertices in this independent set, we
set all the colored vertices aside and repeat on the re-
maining graph using new colors. When ∆ ≤ nρ, we
apply algorithm A to color the remaining graph us-
ing Õ(n(1−

x
k )ρ) colors. Then algorithm B colors any

k-colorable graphs using Õ(nCk) colors if the following
equations hold:

Ck =
³
1− x

k

´
ρ, (3)³

1− x
k

´
ρ = 1− (1− Ck−1)ρ. (4)

Solving the equations with respect to Ck, we obtain
the recurrence relation:

Ck =
1− x

k

2− x
k
− Ck−1

. (5)

We can rewrite this relation as follows:

1

1− Ck
= 1 +

³
1− x

k

´ 1

1− Ck−1
, (6)

and for k = 3,

1

1− C3
=
6− x
3

. (7)

Thus

1
1−Ck =

k+1
x+1 +

3!
k!
Γ(k−x+1)
Γ(4−x)

³
6−x
3 − 4

x+1

´
. (8)

It is obvious that for some t, the following inequality
holds:

k + 1

x+ 1
≤ 1

1− Ck
≤ k + 1
x+ t

, (9)

which implies

1− x+ 1
k + 1

≤ Ck ≤ 1−
x+ t

k + 1
. (10)

For k = 3, (10) is reduced to the following inequality:

1− 3

6− x ≤ 1−
x+ t

4
. (11)

It can be rewritten as follows:

x2 + (t− 6)x+ (12− 6t) ≥ 0, (12)

which is true if the following one holds:

(t− 6)2 − 4(12− 6t) ≥ 0. (13)

Thus we obtain that t ≤ −6 + 4
√
3 = 0.928.

Assume inductively that for k − 1 and t ≤ 0.928,

Ck−1 ≤ 1−
x+ t

k
. (14)

We can obtain the following inequality from (5):

Ck ≤
1− x

k

2− x
k − (1− x+t

k )

= 1− x+ t
k + t

≤ 1− x+ t
k + 1

(15)

By induction on k, we conclude that Ck ≤ 1 − (x +
t)/(k + 1) for all k ≥ 3.
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We now discuss the behavior of Ck = Ck(x) as a
function of x. For x and x0 such that 2 < x < x0 < 3,
we can show directly from (7) that for k = 3,

1

1− C3(x0)
=
6− x0
3

<
6− x
3

=
1

1− C3(x)
. (16)

By induction on k, we can show the following inequal-
ity:

1

1− Ck(x0)
= 1 +

µ
1− x

0

k

¶µ
1

1− Ck−1(x0)

¶
< 1 +

³
1− x

k

´µ 1

1− Ck−1(x0)

¶
< 1 +

³
1− x

k

´µ 1

1− Ck−1(x)

¶
=

1

1− Ck(x)
. (17)

We have shown that for all k ≥ 3, 1
1−Ck(x) is a de-

creasing function of x, which implies that Ck is also a
decreasing function of x. Note that the algorithm pre-
sented by Karger et al. [5] is the case where x = 2.
(In this case, We can obtain that Ck = 1 − 3/(k + 1)
from (8).) Thus, if there were an algorithm that colors
any k-colorable graph with maximum degree ∆ using
Õ(∆1−x/k) colors, where 2 < x < 3, then we could de-
rive an algorithm using less colors than Karger et al.
[5] for any k-colorable graph.

4. The 3-colorable Graph

4.1 The Blum-Karger Algorithm

Applying Blum’s algorithm (Theorem 13 of [4]) and
combining with Karger et al. [5] for 3-colorable graph,
Blum and Karger [6] provided the following results.
Lemma 4 ([6]) In any 3-colorable graph with average
degree exceeding 2nρ, we can make progress towards an
Õ(nα)-coloring where α = 3

5 (1− ρ).
Theorem 5 ([6]) There is a polynomial time algorithm
to color any 3-colorable graph with Õ(n3/14) colors.

4.2 Combination of Blum’s Algorithm and Algorithm
A

We are given a 3-colorable graph. If its average de-
gree is at least 2nρ, we can color the graph using
Õ(nα) = Õ(n

3
5 (1−ρ)) colors based on Lemma 4. Other-

wise, the graph has at least n
2 vertices of degree less

than 4nρ. The subgraph induced by those vertices
clearly has maximum degree ∆ ≤ 4nρ, and we color
the subgraph by algorithm A using Õ(n(1−

x
3 )ρ) colors.

This coloring must contain an independent set of size
Ω̃(n1−(1−

x
3 )ρ). Then we can color the 3-colorable graph

using Õ(max{n(1− x
3 )ρ, n

3
5 (1−ρ)}) colors. Let ρ = 9

24−5x ,
we obtain the following result.

Corollary 6 There is an algorithm to color any 3-

colorable graph with Õ(nB3) = Õ(n
9−3x
24−5x ) colors.

We can rewrite B3 as follows:

B3 =
3

5

µ
1− 9

24− 5x

¶
, (18)

thus B3 is decreasing with x. When 2 < x < 3, it
improves the result of Õ(n

3
14 )-coloring for 3-colorable

graph.

5. A Look at Algorithm Combined-Color of
Halperin et al.

5.1 Algorithm Combined-Color

By combining the coloring algorithms of Karger et al.
[5], the combinatorial coloring algorithms of Blum [4],
and an extension of a technique of Alon and Kahale [10]
for finding relatively large independent sets in graphs,
Halperin, Nathaniel and Zwick [7] obtained the new
results.
Lemma 7 ([7]) Let G = (V,E) be a k-colorable graph
on n vertices. Then, an independent set of G of size
Ω̃(nf(k)) can be found in polynomial time, where f(k) =
3/(k + 1) for k ≥ 3.
Theorem 8 ([7]) Let G = (V,E) be a k-colorable graph
on n vertices that contains an independent set of size
at least n/k. Then, an independent set of G of size
Ω̃(nf(k)) can be found in polynomial time, where f(k) =
3/(k + 1) for k ≥ 3.
Theorem 9 ([7]) Algorithm Combined-Color runs in
polynomial time and it colors any k-colorable graph on n
vertices using Õ(nαk) colors, where α2 = 0,α3 = 3/14,
and αk = 1− 6

k+4+3(1−2/k)/(1−αk−2) , for k ≥ 4.

These results came from the following simple obser-
vation given by Blum [4]:
Lemma 10 ([4]) Let k ≥ 3 be an integer and 0 < α <
1. If in any k-colorable graph G = (V,E) on n vertices
we can find, in polynomial time, at least one of the fol-
lowing:
1. Two vertices u, v ∈ V that have the same color

under any valid k-coloring of G (Same Color),
2. An independent set I ⊆ V of size Ω̃(n1−α)(Large

Independent Set),
then, we can color every k-colorable graph, in polyno-
mial time, using Õ(nα) colors.
Theorem 11 ([4]) Let G = (V,E) be a k-colorable
graph on n vertices with minimum degree dmin in which
no two vertices have more than s common neighbors.
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Then, it is possible to construct, in polynomial time,
a collection T of Õ(n) subsets of V , such that at
least one T ∈ T satisfies the following two conditions:

(i) |T | ≥ Ω̃(d
2
min

s ). (ii) T has an independent subset of

size at least ( 1
k−1 −O( 1

logn ))|T |.

5.2 Algorithm Combined-Color(x)

Using algorithm A, we can derive the following result
similar to Lemma 7 [7] for finding a relatively large
independent set in graphs.

Corollary 12 Let G = (V,E) be a k-colorable graph
on n vertices. Then, an independent set of G of size
Ω̃(nf(k)) can be found in polynomial time, where 2 <
x < 3, t = 0.928 and f(k) = 1 − Ck ≥ (x + t)/(k + 1)
for k ≥ 3.

Proof: The proof is by induction on k.
k = 3. We use the result in Section 3. Apply the de-

rived algorithm B to color the 3-colorable graph using

Õ(nC3) = Õ(n1−
3

6−x ) colors, from which an indepen-

dent set of size Ω̃(n1−C3) = Ω̃(n
3

6−x ) ≥ Ω̃(n
x+0.928

4 ) is
extracted.
Assume inductively that for (k− 1)-colorable graph,

we can find an independent set of size Ω̃(nf(k−1)) =
Ω̃(n1−Ck−1) ≥ Ω̃(nx+t

k ). Now for k-colorable graph, we
describe two ways of finding independent sets of G. Us-
ing the algorithm A to find an independent set of size
Ω̃( n

∆1−x/k ). Alternatively, apply derived algorithm B
on the subgraph GN(v) induced by N(v) of a vertex v
with d(v) = ∆. Because GN(v) is (k−1)-colorable, then
we can find an independent set of size Ω̃(∆f(k−1)). Tak-
ing the larger of these two independent sets, we obtain
an independent set of G of size

Ω̃
³
max

n n

∆1−x/k
,∆f(k−1)

o´
≥ Ω̃

Ã
n

1

1+
1−x/k
f(k−1)

!
= Ω̃

³
nf(k)

´
.

Similar to Corollary 3, we can prove that f(k) = 1 −
Ck ≥ x+t

k+1 as required.

Based on the Lemma 3.3 [7] and Corollary 12, we can
obtain the following result, which is similar to Theo-
rem 8 [7]. Here we omit the proof, which is the same
as the one presented by Halperin et al. [7].

Corollary 13 Let G = (V,E) be a k-colorable graph
on n vertices that contains an independent set of size
at least n/k. Then, an independent set of G of size
Ω̃(nf(k)) can be found in polynomial time, where 2 <
x < 3, t = 0.928 and f(k) = 1 − Ck ≥ (x + t)/(k + 1)
for k ≥ 3.

Now we derive the following algorithm Combined-
Color(x) for k ≥ 4.

Algorithm Combined-Color(x) for k ≥ 4
1. Repeatedly remove from the graph G vertices

of degree less than nρ. Let U be the set of vertices
so removed and D be the average degree of GU , thus
D ≤ nρ.
2. If |U | ≥ n

2 , apply algorithm A to find an indepen-

dent set of GU of size Ω̃(n/D
1−x/k) ≥ Ω̃(n1−(1−x/k)ρ).

If 1 − (1 − x/k)ρ = 1 − Bk, then we make progress of
type 2.
3. Otherwise(|U | < n

2 ), let W = V − U . Note that
|W | ≥ n

2 and that the minimum degree dmin in GW
satisfies dmin ≥ nρ.

4. For every u, v ∈ W , consider the set S =
N(u) ∩ N(v). If |S| ≥ n1−β, then apply the color-
ing algorithm recursively on GS and (k − 2). If GS is
(k − 2)-colorable, then the algorithm produces a color-
ing of GS using Õ(|S|Bk−2) colors, from which an inde-
pendent set of size Ω̃(|S|1−Bk−2) ≥ Ω̃(n(1−Bk−2)(1−β))
is easily extracted. If (1−Bk−2)(1−β) = 1−Bk, then
we make progress of type 2. If the coloring returned by
the recursive call uses more than Õ(|S|Bk−2) colors, we
can infer that GS is not (k − 2)-colorable and thus, u
and v must be assigned the same color under any valid
k-coloring of G, then we make progress of type 1.
5. Otherwise we know that |S| < n1−β for every

u, v ∈ W . Also, we know that the minimum degree
dmin in GW satisfies dmin ≥ nρ.
6. We now apply Blum’s algorithm, with dmin ≥ nρ

and s < n1−β, and obtain a collection T of Õ(n)
subsets of W such that at least one T ∈ T satisfies
|T | ≥ Ω̃(d

2
min

s ) ≥ Ω̃(n2ρ+β−1), and T contains an inde-
pendent set of size at least ( 1

k−1 −O( 1
log n ))|T |.

7. Now apply the result of Corollary 13 on GT ,
for each T ∈ T . In at least one of these runs we ob-
tain an independent set of size Ω̃(n(1−Ck−1)(2ρ+β−1)). If
(1− Ck−1)(2ρ+β−1) = 1−Bk, then we make progress
of type 2.

Algorithm Combined-Color(x) colors any k-colorable
graph with Õ(nBk) colors if the following equations
hold.

1−
³
1− x

k

´
ρ = 1−Bk, (19)

(1−Bk−2)(1− β) = 1−Bk, (20)

(1− Ck−1)(2ρ+ β − 1) = 1−Bk. (21)

Solving these equations with respect to Bk, we obtain
the recurrence relation:

Bk =
1 +

1−Ck−1
1−Bk−2

1 + (1− Ck−1)( 2
1−x/k +

1
1−Bk−2

)
. (22)

We can rewrite this relation as follows:
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1
1−Bk =

1
2

n
2 + (1− x

k )(
1

1−Ck−1 +
1

1−Bk−2 )
o
(23)

and B2 = 0, B3 = (9 − 3x)/(24 − 5x). Note that B3 is
decreasing with x for 2 < x < 3.
The results of Halperin et al. [7] can also be rewritten

as follows:

1
1−αk =

1
2

n
2 + (1− 2

k )(
1

1−(1−3/k) +
1

1−αk−2 )
o
, (24)

and α2 = 0, α3 = 3/14.
We consider the behavior ofBk = Bk(x) as a function

of x. In Sections 3 and 4, we have shown that both Ck−1
and B3 are decreasing with x and Ck−1 < 1−3/k, B3 <
α3. Similar to the discussion in Section 3, we can show
that for all k ≥ 4, 1

1−Bk(x) is a decreasing function of x.
This implies that Bk is also a decreasing function of x.
Note that the results of Halperin et al. [7] correspond
to the case where x = 2. Thus, for 2 < x < 3 and
k ≥ 4, we could color any k-colorable graph with less
colors than Halperin et al. [7].
By Corollary 3, let Ck = 1− (x+ t)/(k + 1), we can

rewrite (23) as follows:

1
1−Bk =

1
2

n
1 + k+t

x+t +
¡
1− x

k

¢
1

1−Bk−2

o
. (25)

It can be proved that for 2 < x < 3, t = 0.928 and
k ≥ 4, the following equation holds:

1

1−Bk
=
k + t− 1
x+ t

+
x(3− t)
k(x+ t)

+ βk, (26)

where βk satisfies the following recurrence relation:

βk =
x(2− x)(3− t)
2k(k − 2)(x+ t) +

k − x
2k

βk−2

≤ 1

2
βk−2.

We can obtain that

Bk = 1−
x+ t

k + t− 1 +O
µ
1

k2

¶
. (27)

6. Concluding remarks

If there were an algorithm that colors any k-colorable
graph with maximum degree ∆ using Õ(∆1−x/k) colors
where 2 < x < 3 and k ≥ 3, we have derived some
improved results for k-colorable graph. The remaining
interesting problem is how to find such an algorithm.
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